cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A269023 Complement of A269020: numbers not of the form ceiling(n^(1+1/n)).

Original entry on oeis.org

2, 4, 8, 19, 51, 141, 392, 1079, 2957, 8072, 21987, 59825, 162695, 442342, 1202521, 3268920, 8885999, 24154826, 65659826, 178482140
Offset: 1

Views

Author

Bob Selcoe, Feb 18 2016

Keywords

Comments

The limiting ratio is e (see comment in A059921).

Examples

			The term 8 appears because A269020(5)=7 and A269020(6)=9.
		

Crossrefs

Programs

  • Mathematica
    Complement[Range[1, 100000], Table[Ceiling[n^(1 + 1/n)], {n, 100000}]] (* Vaclav Kotesovec, Mar 12 2016 *)
  • PARI
    a269020(n) = ceil(n^(1+1/n))
    for(n=1, 1e20, if(a269020(n+1)-a269020(n) > 1, print1(a269020(n)+1, ", "))) \\ Felix Fröhlich, Mar 12 2016
    
  • Python
    from itertools import count
    def A269023(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            if x==1: return n+1
            z = x**x
            for y in count(x,-1):
                if y**(y+1) <= z:
                    return n+y
                z //= x
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Extensions

a(18)-a(20) from Felix Fröhlich, Mar 12 2016

A269024 a(n) = A269020(n) - n.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Bob Selcoe, Feb 18 2016

Keywords

Comments

Same as subtracting the index (n) from the output (a(n)) in A269020.

Examples

			a(20)=4 because A269020(20) = 24, and 24-20=4.
a(5)=2, a(6)=3 and A269023(3)=8, so a(6) = 8-6+1 = 3.
		

Crossrefs

Formula

a(n) = either a(n-1) or a(n-1)+1.
When a(n) = a(n-1)+1, a(n) = A269023(a(n)) - n + 1.
Showing 1-2 of 2 results.