A269023 Complement of A269020: numbers not of the form ceiling(n^(1+1/n)).
2, 4, 8, 19, 51, 141, 392, 1079, 2957, 8072, 21987, 59825, 162695, 442342, 1202521, 3268920, 8885999, 24154826, 65659826, 178482140
Offset: 1
Examples
The term 8 appears because A269020(5)=7 and A269020(6)=9.
Programs
-
Mathematica
Complement[Range[1, 100000], Table[Ceiling[n^(1 + 1/n)], {n, 100000}]] (* Vaclav Kotesovec, Mar 12 2016 *)
-
PARI
a269020(n) = ceil(n^(1+1/n)) for(n=1, 1e20, if(a269020(n+1)-a269020(n) > 1, print1(a269020(n)+1, ", "))) \\ Felix Fröhlich, Mar 12 2016
-
Python
from itertools import count def A269023(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): if x==1: return n+1 z = x**x for y in count(x,-1): if y**(y+1) <= z: return n+y z //= x return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Extensions
a(18)-a(20) from Felix Fröhlich, Mar 12 2016
Comments