cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269023 Complement of A269020: numbers not of the form ceiling(n^(1+1/n)).

Original entry on oeis.org

2, 4, 8, 19, 51, 141, 392, 1079, 2957, 8072, 21987, 59825, 162695, 442342, 1202521, 3268920, 8885999, 24154826, 65659826, 178482140
Offset: 1

Views

Author

Bob Selcoe, Feb 18 2016

Keywords

Comments

The limiting ratio is e (see comment in A059921).

Examples

			The term 8 appears because A269020(5)=7 and A269020(6)=9.
		

Crossrefs

Programs

  • Mathematica
    Complement[Range[1, 100000], Table[Ceiling[n^(1 + 1/n)], {n, 100000}]] (* Vaclav Kotesovec, Mar 12 2016 *)
  • PARI
    a269020(n) = ceil(n^(1+1/n))
    for(n=1, 1e20, if(a269020(n+1)-a269020(n) > 1, print1(a269020(n)+1, ", "))) \\ Felix Fröhlich, Mar 12 2016
    
  • Python
    from itertools import count
    def A269023(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            if x==1: return n+1
            z = x**x
            for y in count(x,-1):
                if y**(y+1) <= z:
                    return n+y
                z //= x
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Extensions

a(18)-a(20) from Felix Fröhlich, Mar 12 2016