A269059 Construct a hollow square of 1's of side n and fill its interior with 0's to create a stack of n binary numbers. Express the sum of the stack in decimal.
1, 6, 19, 48, 113, 258, 579, 1284, 2821, 6150, 13319, 28680, 61449, 131082, 278539, 589836, 1245197, 2621454, 5505039, 11534352, 24117265, 50331666, 104857619, 218103828, 452984853, 939524118, 1946157079, 4026531864, 8321499161, 17179869210, 35433480219, 73014444060
Offset: 1
Examples
1 1 1 3 1 1 1 7 1 1 1 1 15 a(1)=1 1 1 +3 1 0 1 +5 1 0 0 1 + 9 a(2)=6 1 1 1 +7 1 0 0 1 + 9 a(3)=19 1 1 1 1 +15 a(4)=48
Links
- Index entries for linear recurrences with constant coefficients, signature (6, -13, 12, -4).
Programs
-
Magma
[1] cat [2*(2^n-1)+(n-2)*(2^(n-1)+1): n in [2..40]]; // Vincenzo Librandi, Feb 27 2016
-
Mathematica
Join[{1}, LinearRecurrence[{6, -13, 12, -4}, {0, 6, 19, 48}, {2, 32}]] (* Jean-François Alcover, Feb 27 2016 *)
-
PARI
a(n) = if (n==1, 1, 2*(2^n-1)+(n-2)*(2^(n-1)+1)); \\ Michel Marcus, Mar 24 2016
-
PARI
Vec(x*(1-2*x^2)^2/((1-2*x)^2*(1-x)^2) + O(x^100)) \\ Altug Alkan, Mar 24 2016
Formula
a(n) = 2*(2^n-1)+(n-2)*(2^(n-1)+1), for n>1.
G.f.: x*(1-2*x^2)^2/((1-2*x)^2*(1-x)^2). - Robert Israel, Feb 18 2016