cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269064 At stage 1, start with a unit equilateral triangle. At each successive stage add 3*(n-1) new triangles around outside with vertex-to-vertex contacts. Sequence gives number of triangles at n-th stage.

Original entry on oeis.org

0, 1, 4, 10, 26, 48, 87, 135, 208, 293, 410, 542, 714, 904, 1141, 1399, 1712, 2049, 2448, 2874, 3370, 3896, 4499, 5135, 5856, 6613, 7462, 8350, 9338, 10368, 11505, 12687, 13984, 15329, 16796, 18314, 19962, 21664, 23503, 25399, 27440, 29541, 31794, 34110, 36586, 39128, 41837, 44615, 47568
Offset: 0

Views

Author

Luce ETIENNE, Feb 18 2016

Keywords

Comments

At stage n, we count (6*n^2-6*n+5-3*(2*n-1)*(-1)^n)/8 unit up-pointing triangles and 3*(2*n^2-2*n+1+(2*n-1)*(-1)^n)/8 unit down-pointing triangles.
At stage n, the total number of unit triangles is (3*n^2-3*n+2)/2 = A005448(n). It is the same total as for A064412. Note also that A064412 gives number of triangles in a geometrical structure according to expansion side-side (mode S-S).
The edges of several unit triangles can form larger size triangles, and these are also up- or down-pointing. The number of all such larger is given by :(14*n^3-9*n^2+11*n+18-(9*n^2+3*n+14)*(-1)^n-4*((-1)^((2*n+1-(-1)^n)/4)))/64 up-pointing triangles and (14*n^3-15*n^2+35*n-6+(9*n^2+21*n+2)*(-1)^n+4*((-1)^((2*n-1+(-1)^n)/4)))/64 down-pointing triangles.
As for A265282 we observe that starting with n = 4 we can see and count hexagonal and dodecagonal forms for example in a reticular system (incomplete with hexagonal holes) by opposition to a compact shape A064412.

Examples

			a(0)= 0, a(1) = 1, a(2) = 4, a(3) = 7+3 = 10, a(4) = 19 + 6 + 1 = 26, a(5) = 31 + 12 + 4 + 1 = 48.
		

Crossrefs

Programs

  • Magma
    [(14*n^3-12*n^2+23*n+6+3*(3*n-2)*(-1)^n+2*((-1)^((2*n-1+(-1)^n) div 4)-(-1)^((6*n-1+(-1)^n) div 4)))/32: n in [0..50]]; // Vincenzo Librandi, Feb 19 2016
    
  • Mathematica
    Table[(14 n^3 - 12 n^2 + 23 n + 6 + 3 (3 n - 2) (-1)^n + 2 ((-1)^((2*n - 1 + (-1)^n) / 4) - (-1)^((6 n - 1 + (-1)^n) / 4))) / 32, {n, 0, 45}] (* Vincenzo Librandi, Feb 19 2016 *)
  • PARI
    concat(0, Vec(x*(1+2*x+2*x^2+8*x^3+2*x^4+5*x^5+x^6)/((1-x)^4*(1+x)^2*(1+x^2)) + O(x^50))) \\ Colin Barker, Feb 24 2016

Formula

a(n) = (7*n^3-3*n^2+4*n)/2 for n even.
a(n) = (28*n^3+30*n^2+16*n+7+(-1)^n)/8 for n odd.
a(n) = (14*n^3-12*n^2+23*n+6+3*(3*n-2)*(-1)^n+2*((-1)^((2*n-1+(-1)^n)/4)-(-1)^((6*n-1+(-1)^n)/4)))/32.
G.f.: x*(1+2*x+2*x^2+8*x^3+2*x^4+5*x^5+x^6) / ((1-x)^4*(1+x)^2*(1+x^2)). - Colin Barker, Feb 24 2016