cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269111 a(n) = length of the repeating part of row n of A288097.

Original entry on oeis.org

2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Felix Fröhlich, Feb 19 2016

Keywords

Comments

a(n) + A268479(n) = total number of different terms in the trajectory of p.
a(15) is unknown, since there is no known Wieferich prime in base 47 (cf. Fischer link).
Obviously, a(n) != 1 for all n.
Period length of the repeating part of prime(n)-th row of A281001. - Felix Fröhlich, Jan 14 2017

Examples

			The trajectory of 31 starts 31, 7, 5, 2, 1093, 2, 1093, 2, 1093,  ...., entering a repeating cycle of length 2, so a(11) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ DeleteCases[Values@ PositionIndex@ NestList[Function[n, Block[{p = 2}, While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p]], Prime@ n, 12], ?(Length@ # == 1 &)], {n, 12}] (* _Michael De Vlieger, Jun 06 2017, Version 10 *)
  • PARI
    a039951(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)==1, return(p)))
    trajectory(n, terms) = my(v=[n]); while(#v < terms, v=concat(v, a039951(v[#v]))); v
    a(n) = my(p=prime(n), i=0, len=2, t=trajectory(p, len), k=#t); while(1, while(k > 1, k--; if(t[k]==t[#t], return(#t-k))); len++; t=trajectory(p, len); k=#t) \\ Felix Fröhlich, Jan 14 2017

Extensions

Definition simplified by Felix Fröhlich, Jun 05 2017