cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269132 a(n) = n + floor(n*(2*n+1)/5).

Original entry on oeis.org

0, 1, 4, 7, 11, 16, 21, 28, 35, 43, 52, 61, 72, 83, 95, 108, 121, 136, 151, 167, 184, 201, 220, 239, 259, 280, 301, 324, 347, 371, 396, 421, 448, 475, 503, 532, 561, 592, 623, 655, 688, 721, 756, 791, 827, 864, 901, 940, 979, 1019, 1060, 1101, 1144, 1187, 1231
Offset: 0

Views

Author

Mikk Heidemaa, Feb 19 2016

Keywords

Comments

Differences between the two adjacent prime terms (i.e. between two primes in the blocks of length two) are divisible by 4 (checked up to n=10^8).

Crossrefs

Cf. A139570.

Programs

  • Magma
    [n + n*(2*n+1) div 5: n in [0..60]]; // Bruno Berselli, Mar 03 2016
  • Mathematica
    Table[Floor[2 n (n + 3)/5], {n, 0, 1000}]
    LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {0, 1, 4, 7, 11, 16, 21}, 100]
    CoefficientList[Series[(x^6 - x^5 - x^4 - 2 x^2-x)/((x - 1)^3 (x^4 + x^3 + x^2 + x + 1)), {x, 0, 100}], x]
  • PARI
    a(n) = 2*n*(n+3)\5; \\ Michel Marcus, Mar 03 2016
    

Formula

G.f.: (x^6-x^5-x^4-2x^2-x)/((x-1)^3*(x^4+x^3+x^2+x+1)).
a(n) = ceiling(((n*(n+2)+(n+1)*ceiling(n))*(n-1))/ (2*ceiling(n)+ceiling(ceiling(n)+n)+n)+n) for n>0.
a(n) = floor(A139570(n)/5). - Michel Marcus, Mar 03 2016