A269135 Numbers n which are neither a prime nor a square of a prime such that there is no d, 2<=d<=n/2, which divides binomial(n-d-1,d-1) and is not coprime to n.
1, 6, 8, 10, 12, 15, 20, 21, 24, 33, 35, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999
Offset: 1
Keywords
Links
- R. J. Mathar, Corrigendum to "On the divisibility of ...", arXiv:1109.0922 [math.NT], 2011.
- V. Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory 3, no.1 (2007), 119-139.
Programs
-
Mathematica
selQ[n_] := !PrimeQ[n] && !PrimeQ[Sqrt[n]] && NoneTrue[Range[2, n/2], Divisible[Binomial[n - # - 1, # - 1], #] && !CoprimeQ[n, #]&]; pp = Select[Prime[Range[200]], PrimeQ[# + 2] &]; Join[Select[Range[33], selQ], pp (pp + 2) // Rest] (* Jean-François Alcover, Sep 28 2018, after Shevelev's theorem *)
-
PARI
isok(n) = { if (!isprime(n) && !(issquare(n, &p) && isprime(p)), for (d=2, n\2, if ((gcd(n,d)!=1) && !(binomial(n-d-1,d-1) % d), return (0))); return (1););} \\ Michel Marcus, Feb 20 2016
Extensions
Typos in data corrected by Jean-François Alcover, Sep 28 2018
Comments