cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269160 Formula for Wolfram's Rule 30 cellular automaton: a(n) = n XOR (2n OR 4n).

Original entry on oeis.org

0, 7, 14, 13, 28, 27, 26, 25, 56, 63, 54, 53, 52, 51, 50, 49, 112, 119, 126, 125, 108, 107, 106, 105, 104, 111, 102, 101, 100, 99, 98, 97, 224, 231, 238, 237, 252, 251, 250, 249, 216, 223, 214, 213, 212, 211, 210, 209, 208, 215, 222, 221, 204, 203, 202, 201, 200, 207, 198, 197, 196, 195, 194, 193, 448, 455, 462
Offset: 0

Views

Author

Antti Karttunen, Feb 20 2016

Keywords

Comments

Take n, write it in binary, see what Rule 30 would do to that state, convert it to decimal: that is a(n). For example, we can see in A110240 that 7 = 111_2 becomes 25 = 11001_2 under Rule 30, which is shown here by a(7) = 25. - N. J. A. Sloane, Nov 25 2016
The sequence is injective: no value occurs more than once.
Fibbinary numbers (A003714) give all integers n>=0 for which a(n) = A048727(n) and for which a(n) = A269161(n).

Crossrefs

Cf. A110240 (iterates starting from 1).
Cf. A269162 (left inverse).
Cf. A269163 (same sequence sorted into ascending order).
Cf. A269164 (values missing from this sequence).
Cf. also A048727, A269161.

Programs

Formula

a(n) = n XOR (2n OR 4n) = A003987(n, A003986(2*n, 4*n)).
Other identities. For all n >= 0:
a(2*n) = 2*a(n).
a(n) = A057889(A269161(A057889(n))). [Rule 30 is the mirror image of rule 86.]
A269162(a(n)) = n.
For all n >= 1:
A070939(a(n)) - A070939(n) = 2. [The binary length of a(n) is two bits longer than that of n for all nonzero values.]
G.f.: (3*x + 2*x^2 +x^3)/(1 - x^4) + Sum_{k>=1}(2^(k + 1)*x^(2^(k - 1))/((1 + x^(2^(k + 1)))*(1 - x))). - Miles Wilson, Jan 24 2025