cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269173 Formula for Wolfram's Rule 126 cellular automaton: a(n) = (n XOR 2n) OR (n XOR 4n).

Original entry on oeis.org

0, 7, 14, 15, 28, 31, 30, 27, 56, 63, 62, 63, 60, 63, 54, 51, 112, 119, 126, 127, 124, 127, 126, 123, 120, 127, 126, 127, 108, 111, 102, 99, 224, 231, 238, 239, 252, 255, 254, 251, 248, 255, 254, 255, 252, 255, 246, 243, 240, 247, 254, 255, 252, 255, 254, 251, 216, 223, 222, 223, 204, 207, 198, 195, 448, 455, 462
Offset: 0

Views

Author

Antti Karttunen, Feb 22 2016

Keywords

Examples

			a(4) = (4 XOR 2*4) OR (4 XOR 4*4) = 12 OR 20 = 28. - _Indranil Ghosh_, Apr 02 2017
		

Crossrefs

Cf. A267365 (iterates starting from 1).
Cf. A269174.

Programs

  • C
    #include 
    int main()
    {
        int n;
        for(n=0; n<=100; n++){
            printf("%d, ",(n^(2*n))|(n^(4*n)));
        }
        return 0;
    } /* Indranil Ghosh, Apr 02 2017 */
  • Mathematica
    Table[BitOr[BitXor[n, 2n], BitXor[n, 4n]], {n, 0, 100}] (* Indranil Ghosh, Apr 02 2017 *)
  • PARI
    for(n=0, 100, print1(bitor(bitxor(n, 2*n), bitxor(n, 4*n)),", ")) \\ Indranil Ghosh, Apr 02 2017
    
  • Python
    print([(n^(2*n))|(n^(4*n)) for n in range(101)]) # Indranil Ghosh, Apr 02 2017
    
  • Scheme
    (define (A269173 n) (A003986bi (A048724 n) (A048725 n)))
    

Formula

a(n) = A048724(n) OR A048725(n) = (n XOR 2n) OR (n XOR 4n), where OR is a bitwise-or (A003986) and XOR is A003987.
Other identities. For all n >= 0:
a(2*n) = 2*a(n).
a(n) = A057889(a(A057889(n))). [Rule 126 is amphichiral (symmetric).]