A269222 Period 4: repeat [1,9,8,9].
1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9
Offset: 1
Examples
For n=2, a(2) = digital root of Fibonacci(18*2) or 14930352; therefore, a(2) = 9, since the digital root of 14930352 = 9.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Programs
-
Mathematica
Table[NestWhile[Total@ IntegerDigits@ # &, Fibonacci[18 n], IntegerLength@ # > 1 &], {n, 120}] (* Michael De Vlieger, Jul 11 2016 *) PadRight[{},100,{1,9,8,9}] (* Harvey P. Dale, Sep 24 2021 *)
-
PARI
a(n)=[9,1,9,8][n%4+1] \\ Charles R Greathouse IV, Jul 21 2016
Formula
a(n) = A010888(Fibonacci(18*n)).
From Wesley Ivan Hurt, Sep 03 2022: (Start)
a(n) = a(n-4) for n >= 5.
a(n) = (9/4)*(3+(-1)^n)-7*sin(n*Pi/2)/2. (End)
Comments