cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269237 a(n) = (n + 1)^2*(5*n^2 + 10*n + 2)/2.

Original entry on oeis.org

1, 34, 189, 616, 1525, 3186, 5929, 10144, 16281, 24850, 36421, 51624, 71149, 95746, 126225, 163456, 208369, 261954, 325261, 399400, 485541, 584914, 698809, 828576, 975625, 1141426, 1327509, 1535464, 1766941, 2023650, 2307361, 2619904, 2963169, 3339106, 3749725, 4197096
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

Partial sums of centered dodecahedral numbers (A005904).

Crossrefs

Programs

  • Magma
    [(n + 1)^2*(5*n^2 + 10*n + 2)/2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 15 2017
  • Maple
    A269237:=n->(n + 1)^2*(5*n^2 + 10*n + 2)/2: seq(A269237(n), n=0..50); # Wesley Ivan Hurt, Oct 15 2017
  • Mathematica
    Table[(n + 1)^2 ((5 n^2 + 10 n + 2)/2), {n, 0, 35}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 34, 189, 616, 1525}, 36]
  • PARI
    x='x+O('x^99); Vec((1+29*x+29*x^2+x^3)/(1-x)^5) \\ Altug Alkan, Apr 10 2016
    

Formula

G.f.: (1 + 29*x + 29*x^2 + x^3)/(1 - x)^5.
E.g.f.: exp(x)*(2 + 66*x + 122*x^2 + 50*x^3 + 5*x^4)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} 1/a(n) = (5 - Pi^2 - sqrt(15)*Pi*cot(sqrt(3/5)*Pi))/9 = 1.0377796966... . - Vaclav Kotesovec, Apr 10 2016