cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269268 Kolakoski-(1,5) sequence: a(n) is length of n-th run.

Original entry on oeis.org

1, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 1, 5, 1, 5, 1, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 1, 5, 1, 5, 1, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 1
Offset: 1

Views

Author

Vincenzo Librandi, Feb 25 2016

Keywords

Comments

15555511, 155555111, 155555111115555511111 are primes.
The fraction of 5s in this sequence approaches ((3+2*sqrt(2))^(1/3)+(3-2*sqrt(2))^(1/3))/4 ~ 0.588825 -- see the formula in A064353. - Ed Wynn, Sep 04 2019

Crossrefs

Cf. Kolakoski-(1,k) sequence: A000002 (k=2), A064353 (k=3), A071907 (k=4), this sequence (k=5), A269348 (k=6), A269349 (k=7), A269350 (k=8), A269351 (k=9), A269352 (k=10).

Programs

  • Mathematica
    seed = {1, 5}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]] &, If[i > Length[w], seed, w][[i]]]]; i++, {n, 250}]; w (* from Ivan Neretin in similar sequences *)