A269311 Consider the arithmetic derivative of a number x. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.
8, 18, 21, 160, 1590, 2420, 18620, 69229, 83790, 279964, 494520, 598810, 676450, 1183147, 4233720, 5600348, 14217074, 20025836, 64278677, 425208387, 604048830, 750851470, 1981942354
Offset: 1
Examples
8’ = 12 : 1 + 2 = 3; 2 + 3 = 5; 3 + 5 = 8. 18’ = 21 : 2 + 1 = 3; 1 + 3 = 4; 3 + 4 = 7; 4 + 7 = 11; 7 + 11 = 18.
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,b,k,p,t,v; global n; v:=array(1..h); for n from 1 to q do a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=ilog10(a)+1; if b>1 then for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
dn[n_] := If[Abs@n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@n]]]; (* from Michael Somos, Apr 12 2011 *) Select[Range[10^5], dn[#] >= 10 && (d = IntegerDigits[dn[#]]; While[Total[d] < #, d = Join[Rest[d], {Total[d]}]]; Total[d] == #) &] (* Robert Price, May 22 2019 *)
Extensions
a(19)-a(23) from Lars Blomberg, Jan 18 2018