A269307
Consider the sum of the divisors of a number x>1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.
Original entry on oeis.org
17, 28, 31, 44, 51, 132, 133, 198, 208, 2528, 9241, 13570, 16577, 177568, 228742, 780889, 878078, 1854920, 2775787, 3663541, 8204010, 66326143, 73734437, 164211532, 670396359, 803230921, 832581731, 1036125551, 1572413223
Offset: 1
Sigma(17) = 18 : 1 + 8 = 9; 8 + 9 = 17.
Sigma(133) = 160 : 1 + 6 + 0 = 7; 6 + 0 + 7 = 13; 0 + 7 + 13 = 20; 7 + 13 + 20 = 40; 13 + 20 + 40 = 73; 20 + 40 + 73 = 133.
-
with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
for n from 2 to q do a:=sigma(n); b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]
-
Select[Range[2,10^5], (t = #; d = IntegerDigits[DivisorSigma[1, #]]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* Robert Price, May 21 2019 *)
A269312
Consider a number x. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the arithmetic derivative of x.
Original entry on oeis.org
14, 51, 145, 285, 629, 708, 807, 1318, 2362, 2548, 2869, 3789, 4087, 4811, 6031, 6355, 10201, 15563, 17143, 17287, 17561, 19883, 20567, 21731, 22429, 23461, 26269, 27301, 30967, 33389, 69529, 73211, 85927, 86087, 90133, 96781, 110159, 116011, 159767, 161701, 162055, 190079
Offset: 1
14’ = 9 : 1 + 4 = 5; 4 + 5 = 9.
51’ = 20 : 5 + 1 = 6; 1 + 6 = 7; 6 + 7 = 13; 7 + 13 = 20.
-
with(numtheory): P:=proc(q,h) local a,b,c,k,n,p,t,v; v:=array(1..h);
for n from 1 to q do a:=n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);c:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
while v[t]
-
dn[n_] := If[Abs@n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@n]]]; (* after Michael Somos,Apr 12 2011 *)
Select[Range[10^5], # >= 10 && (s = dn[#]; d = IntegerDigits[#]; While[Total[d] < s, d = Join[Rest[d], {Total[d]}]]; Total[d] == s) &] (* Robert Price, May 22 2019 *)
A269309
Consider the Euler totient function of a number x. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.
Original entry on oeis.org
13, 21, 63, 177, 206, 412, 655, 824, 1990, 2637, 11438, 12485, 23846, 34132, 40528, 56202, 87539, 94597, 1288999, 3075239, 3106991, 20689503, 31173397, 46230492, 65889985, 79476719, 170859904, 266368503, 295845211, 420471958, 445169688, 797687940, 962257660
Offset: 1
phi(13) = 12 : 1 + 2 = 3; 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13.
-
with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
for n from 2 to q do a:=phi(n); b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]
-
Select[Range[10^5], EulerPhi[#] >= 10 && (d = IntegerDigits[EulerPhi[#]]; While[Total[d] < #, d = Join[Rest[d], {Total[d]}];]; Total[d] == #) &] (* Robert Price, May 21 2019 *)
A269310
Consider a number x > 1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the Euler totient function of x.
Original entry on oeis.org
22, 44, 55, 88, 98, 136, 162, 166, 241, 462, 1020, 2040, 2416, 2899, 3060, 4080, 5110, 7942, 10738, 10996, 15006, 24822, 57040, 67054, 70625, 75588, 96888, 261524, 301834, 507471, 735840, 816584, 2893877, 6081064, 8155616, 16513570, 18772258, 40833543
Offset: 1
phi(22) = 10: 2 + 2 = 4; 2 + 4 = 6; 4 + 6 = 10.
-
with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
for n from 2 to q do a:=n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]
-
Select[Range[2,10^5], (t = EulerPhi[#]; d = IntegerDigits[#]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* Robert Price, May 17 2019 *)
A269308
Consider a number x. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the sum of the divisors of x.
Original entry on oeis.org
20, 25, 43, 44, 49, 59, 122, 206, 2485, 11899, 17608, 24141, 56207, 195236, 2424613, 2842925, 6241233, 59087970, 111205290, 124735931, 224269761, 1086241193
Offset: 1
sigma(20) = 42 : 2 + 0 = 2; 0 + 2 = 2; 2 + 2 = 4; 2 + 4 = 6; 4 + 6 = 10; 6 + 10 = 16; 10 + 16 = 26; 16 +26 = 42.
-
with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
for n from 2 to q do a:=n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]
-
Select[Range[10,10^5], (s = DivisorSigma[1, #]; d = IntegerDigits[#]; While[Total[d] < s, d = Join[Rest[d], {Total[d]}]]; Total[d] == s) &] (* Robert Price, May 21 2019 *)
A289868
Consider the digit reverse of a number x. Take the sum of these digits and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to x.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 21, 25, 42, 63, 84, 143, 286, 2355, 5821, 6618, 11709, 12482, 33747, 39571, 129109, 466957, 1162248, 1565166, 1968084, 3636638, 3853951, 4898376, 13443745, 13933175, 17118698, 22421197, 24153462, 147440984, 209989875, 245742153
Offset: 0
Digit reverse of 17 is 71 and 7 + 1 = 8, 1 + 8 = 9, 8 + 9 = 17;
Digit reverse of 286 is 682 and 6 + 8 + 2 = 16, 8 + 2 + 16 = 26, 2 + 16 + 26 = 44, 16 + 26 + 44 = 86, 26 + 44 + 86 = 156, 44 + 86 + 156 = 286.
-
P:=proc(q) local a,b,k,n; for n from 0 to q do a:=convert(n,base,10); b:=convert(a,`+`); while b
-
Select[Range[10^6], Function[n, Total@ NestWhile[Append[Drop[#, 1], Total@ #] &, Reverse@ IntegerDigits@ n, Total@ # < n &] == n]] (* Michael De Vlieger, Jul 20 2017 *)
-
is(n) = {my(d = Vecrev(digits(n))); while(vecsum(d)David A. Corneth, Jul 20 2017
Showing 1-6 of 6 results.
Comments