A269319 Discriminants of real quadratic fields with 3-class group of type (3,3).
32009, 42817, 62501, 72329, 94636, 103809, 114889, 130397, 142097, 151141, 152949, 153949, 172252, 173944, 184137, 189237, 206776, 209765, 213913, 214028, 214712, 219461, 220217, 250748, 252977, 259653, 265245, 275881, 283673, 298849, 320785, 321053, 326945, 333656, 335229, 341724, 342664, 358285, 363397, 371965, 390876
Offset: 1
Examples
The execution of the MAGMA program requires the supersequence A269318 as its input list, and yields the 149 leading terms of A269319 up to 10^6, sifting out 12 terms with associated 3-class group of type (9,3).
Links
- I. O. Angell, A table of totally real cubic fields, Math. Comp. 30 (1976), no. 133, 184-187.
- M. R. Bush, private communication, on 11 July 2015.
- V. Ennola and R. Turunen, On totally real cubic fields, Math. Comp. 44 (1985), no. 170, 495-518.
- P. Llorente and J. Quer, On totally real cubic fields with discriminant D < 10^7, Math. Comp. 50 (1988), no. 182, 581-594.
- D. C. Mayer, Top down capitulation algorithm, Scientific Research 2010.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471-505.
Programs
-
Magma
SetClassGroupBounds("GRH"); p:=3; dList:=A269318; for d in dList do ZX
:=PolynomialRing(Integers()); K:=NumberField(X^2-d); O:=MaximalOrder(K); C:=ClassGroup(O); if ([p,p] eq pPrimaryInvariants(C,p)) then printf "%o,",d; end if; end for;
Comments