A379524
Minimal discriminants d of real quadratic number fields K = Q(sqrt(d)), d > 0, with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned coclass cc(M)=1,2,3,4,...
Original entry on oeis.org
32009, 214712, 710652, 8127208, 180527768
Offset: 1
We have cc(M)=1 for d=32009, cc(M)=2 for d=214712, cc(M)=3 for d=710652, cc(M)=4 for d=8127208, cc(M)=5 for d=180527768. The Magma script "SiftRealIPADs.m" produces a table "IpadFreqReal" of minimal discriminants for each IPAD from the file ipad_freq_real. This table admits the determination of the term a(n) of the sequence A379524. For instance: According to the FORMULA, the table contains three candidates for a(4) with cc(M)=4 and thus cc(M)+1=5=log_3(3^5)=log_3(#[9,27])=log_3(h_3(L_2)) with the second largest 3-class number h_3(L_2) in the IPAD. They are 8321505 and 8491713 and 8127208. Thus the minimal discriminant is a(4)=8127208.
- M. R. Bush, ipad_freq_real, file with two lists, disclist and ipadlist, containing all IPADs of real quadratic fields K with 3-class group of rank 2 and discriminant d < 10^9, Washington and Lee Univ. Lexington, Virginia, 2015.
- Daniel Constantin Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014; J. Théor. Nombres Bordeaux 25 (2013), 401-456.
- Daniel Constantin Mayer, Principalization algorithm via class group structure, arXiv:1403.3839 [math.NT], 2014; J. Théor. Nombres Bordeaux 26 (2014), 415-464.
- Daniel Constantin Mayer, The second p-class group of a number field, arXiv:1403.3899 [math.NT], 2014; Int. J. Number Theory 8 (2012), no. 2, 471-505.
- Daniel Constantin Mayer, M. R. Bush: data file ipad_freq_real
- Daniel Constantin Mayer, Program "SiftRealIPADs.m" which extracts minimal discriminants for assigned IPADs from the file ipad_freq_real and arranges them in the table "IpadFreqReal"
- Daniel Constantin Mayer, "IpadFreqReal": table of minimal discriminants for assigned IPADs
- Daniel Constantin Mayer, Magma program "RealCoClass.m" with endless loop
A269318
Discriminants of real quadratic number fields with 3-class rank 2.
Original entry on oeis.org
32009, 42817, 62501, 72329, 94636, 103809, 114889, 130397, 142097, 151141, 152949, 153949, 172252, 173944, 184137, 189237, 206776, 209765, 213913, 214028, 214712, 219461, 220217, 250748, 252977, 255973, 259653, 265245, 275881, 282461, 283673, 298849, 320785, 321053, 326945, 333656, 335229, 341724, 342664, 358285, 363397, 371965, 384369, 390876
Offset: 1
The execution of the Magma program yields the 161 leading terms of A269318 up to 10^6 and requires 9200 seconds on a single thread of an Intel i7 4-core processor with clock frequency 4GHz. The computation is slow because 303957 discriminants have to be checked for the structure of their associated 3-class groups. Among the 161 3-class groups of 3-rank 2, there are 149 of type (3,3) and 12 of type (9,3). Parallelization (for instance, 4 threads processing ranges of length 250000) would reduce the CPU time.
- I. O. Angell, A table of totally real cubic fields, Math. Comp. 30 (1976), no. 133, 184-187.
- M. R. Bush, private communication, 11 July 2015.
- H. Cohen and J. Martinet, Class groups of number fields: numerical heuristics, Math. Comp. 48 (1987), no. 177, 123-137.
- V. Ennola and R. Turunen, On totally real cubic fields, Math. Comp. 44 (1985), no. 170, 495-518.
- P. Llorente and J. Quer, On totally real cubic fields with discriminant D < 10^7, Math. Comp. 50 (1988), no. 182, 581-594.
- D. C. Mayer, Quadratic p-ring spaces for counting dihedral fields, Int. J. Number Theory 10 (2014), no. 8, 2205-2242.
-
SetClassGroupBounds("GRH"); p:=3;
for d:=0 to 10^6 do if ((d gt 1) and IsFundamental(d)) then
Q:=QuadraticField(d); O:=MaximalOrder(Q); C:=ClassGroup(O);
if (2 eq #pPrimaryInvariants(C,p)) then printf "%o,",d;
end if; end if; end for;
A329786
Discriminants of totally real cubic fields with 2 associated nonconjugate fields.
Original entry on oeis.org
3969, 8281, 13689, 17689, 29241, 37300, 38612, 45684, 46548, 47089, 55700, 61009, 66825, 67081, 69012, 77841, 83700, 90601, 92340, 110889, 113940, 115668, 138996, 148372, 149769, 155412, 157300, 162324, 162409, 164052, 168372, 173556, 181300, 182329, 182868, 185652, 186516, 189972, 191700
Offset: 1
a(1) = 3969 as there are exactly two distinct totally real cubic fields both with discriminant 3969, namely Q[x]/(x^3 - 21*x - 28) and Q[x]/(x^3 - 21*x - 35). - _Robin Visser_, Apr 18 2025
A329787
Discriminants of totally real cubic fields with 3 associated nonconjugate fields.
Original entry on oeis.org
22356, 28212, 31425, 41332, 47860, 54324, 57588, 58077, 62004, 62644, 63028, 65908, 77844, 82484, 86485, 86828, 89073, 95992, 97844, 98132, 99860, 101876, 105192, 108729, 109396, 119604, 122300, 123860, 129164, 136628, 138388, 144212, 144532, 146452, 150164, 152212, 153981, 156244, 161844
Offset: 1
a(1) = 22356 as there are exactly three distinct totally real cubic fields all with discriminant 22356, namely Q[x]/(x^3 - 36*x - 60), Q[x]/(x^3 - 36*x - 78) and Q[x]/(x^3 - 18*x - 6). - _Robin Visser_, Apr 18 2025
A269320
Discriminants of real quadratic fields with 3-class tower group <81,10>.
Original entry on oeis.org
72329, 94636, 153949, 189237, 206776, 209765, 214028, 219461, 275881, 390876, 400369, 431761, 460817, 486581, 548549, 551692, 552392, 602521, 698556, 775480, 775661, 781177, 782876, 804648, 831484, 836493, 893689, 907629, 907709, 957484, 959629, 980108, 993349, 994008
Offset: 1
The leading two terms, 72329, 94636, have been identified by [Heider, Schmithals] (up to 10^5). The first 34 terms up to 10^6 have been determined in the time between 2006 and 2009 [Mayer, 2009]. The 535 terms up to 10^7, computed 13 January 2016, are not published officially yet. They constitute a refinement of the numerical results in [Mayer, 2014].
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a library of groups of small order, 2005, an accepted and refereed GAP package, available also in MAGMA.
- F.-P. Heider and B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 336 (1982), 1-25.
- D. C. Mayer, All known examples for principalization types, Memorial 2009.
- D. C. Mayer, Principalization algorithm via class group structure, J. Thèor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
- D. C. Mayer, Artin transfer patterns on descendant trees of finite p-groups, Adv. Pure Math. 6 (2016), no. 2, 66-104.
-
SetClassGroupBounds("GRH"); p:=3; dList:=A269319; for d in dList do
ZX:=PolynomialRing(Integers()); K:=NumberField(X^2-d); O:=MaximalOrder(K); C,mC:=ClassGroup(O); sS:=Subgroups(C: Quot:=[p]); sI:=[]; for j in [1..p+1] do Append(~sI,0); end for; n:=Ngens(C); g:=(Order(C.(n-1)) div p)*C.(n-1); h:=(Order(C.n) div p)*C.n; ct:=0; for x in sS do ct:=ct+1; if g in x`subgroup then sI[1]:=ct; end if; if h in x`subgroup then sI[2]:=ct; end if; for e in [1..p-1] do if g+e*h in x`subgroup then sI[e+2]:=ct; end if; end for; end for; sA:=[AbelianExtension(Inverse(mQ)*mC) where Q,mQ:=quo: x in sS];
sN:=[NumberField(x): x in sA]; sR:=[MaximalOrder(x): x in sA];
sF:=[AbsoluteField(x): x in sN]; sM:=[MaximalOrder(x): x in sF];
sM:=[OptimizedRepresentation(x): x in sF];
sA:=[NumberField(DefiningPolynomial(x)): x in sM]; sO:=[Simplify(LLL(MaximalOrder(x))): x in sA];
TTT:=[]; epsilon:=0; polarization1:=3; polarization2:=3; for j in [1..#sO] do CO:=ClassGroup(sO[j]); Append(~TTT,pPrimaryInvariants(CO,p));
if (3 eq #pPrimaryInvariants(CO,p)) then epsilon:=epsilon+1; end if; val:=Valuation(Order(CO),p); if (2 eq val) then polarization2:=val; elif (4 le val) then if (3 eq polarization1) then polarization1:=val; else polarization2:=val; end if; end if; end for; TKT:=[]; for j in [1..#sR] do Collector:=[]; I:=sR[j]!!mC(g); if IsPrincipal(I) then Append(~Collector,sI[1]); end if;
I:=sR[j]!!mC(h); if IsPrincipal(I) then Append(~Collector,sI[2]); end if;
for e in [1..p-1] do I := sR[j]!!mC(g+e*h); if IsPrincipal(I) then Append(~Collector,sI[e+2]); end if; end for;
if (2 le #Collector) then Append(~TKT,0); else Append(~TKT,Collector[1]); end if; end for; TAB:=[]; image:=[]; fixedpoints:=0; capitulations:=0;
for j in [1..#TKT] do if (j eq TKT[j]) then Append(~TAB,"A"); fixedpoints:=fixedpoints+1;
elif (0 eq TKT[j]) then Append(~TAB,"A"); capitulations:=capitulations+1;
else Append(~TAB,"B"); end if;
if not (TKT[j] in image) then Append(~image,TKT[j]); end if; end for;
if (2 eq polarization2) and (3 eq polarization1) and (0 eq epsilon) and (1 eq fixedpoints) then printf "%o, ",d; end if; end for;
// On 04 April 2016, MAGMA version V2.21-11 was released for Mac OS, and is able to execute the PROG. - Daniel Constantin Mayer, Apr 16 2016
A269323
Discriminants of real quadratic fields with second 3-class group <729,54>.
Original entry on oeis.org
540365, 945813, 1202680, 1695260, 1958629, 3018569, 3236657, 3687441, 4441560, 5512252, 5571377, 5701693, 6027557, 6049356, 6054060, 6274609, 6366029, 6501608, 6773557, 7573868, 8243464, 8251521, 9054177, 9162577, 9967837
Offset: 1
The leading term, 540365, and thus the first real quadratic field K with capitulation type c.21, (2,0,3,4), has been identified on 01 January 2008 [Mayer, 2007/2008]. However, it required seven further years to determine the pro-3 Galois group G=<2187,307|308>, with metabelianization M=G/G''=<729,54>, of the Hilbert 3-class field tower of K in August 2015. (See [Mayer, 2015] for more details.) The first 25 terms of A269323 up to 10^7 have been determined in [Mayer, 2012] and [Mayer, 2014]. The 358, resp. 4377, terms up to 10^8, resp. 10^9, have been computed by [Bush].
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a library of groups of small order, 2005, an accepted and refereed GAP package, available also in MAGMA.
- M. R. Bush, private communication, 11 July 2015.
- D. C. Mayer, The real quadratic base field K with discriminant d=540365, Targets 2007/2008.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471-505.
- D. C. Mayer, Principalization algorithm via class group structure, J. Thèor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
- D. C. Mayer, New number fields with known p-class tower, Tatra Mt. Math. Publ. 64 (2015), 21-57.
- D. C. Mayer, Artin transfer patterns on descendant trees of finite p-groups, Adv. Pure Math. 6 (2016), no. 2, 66-104.
-
SetClassGroupBounds("GRH"); p:=3; dList:=A269319; for d in dList do
ZX:=PolynomialRing(Integers()); K:=NumberField(X^2-d); O:=MaximalOrder(K); C,mC:=ClassGroup(O); sS:=Subgroups(C: Quot:=[p]); sI:=[]; for j in [1..p+1] do Append(~sI,0); end for; n:=Ngens(C); g:=(Order(C.(n-1)) div p)*C.(n-1); h:=(Order(C.n) div p)*C.n; ct:=0;
for x in sS do ct:=ct+1; if g in x`subgroup then sI[1]:=ct; end if; if h in x`subgroup then sI[2]:=ct; end if; for e in [1..p-1] do if g+e*h in x`subgroup then sI[e+2]:=ct; end if; end for; end for;
sA:=[AbelianExtension(Inverse(mQ)*mC) where Q,mQ:=quo: x in sS]; sN:=[NumberField(x): x in sA]; sR:=[MaximalOrder(x): x in sA];
sF:=[AbsoluteField(x): x in sN]; sM:=[MaximalOrder(x): x in sF];
sM:=[OptimizedRepresentation(x): x in sF];
sA:=[NumberField(DefiningPolynomial(x)): x in sM]; sO:=[Simplify(LLL(MaximalOrder(x))): x in sA]; TTT:=[]; epsilon:=0; polarization1:=3; polarization2:=3; for j in [1..#sO] do CO:=ClassGroup(sO[j]); Append(~TTT,pPrimaryInvariants(CO,p));
if (3 eq #pPrimaryInvariants(CO,p)) then epsilon:=epsilon+1; end if;
val:=Valuation(Order(CO),p); if (2 eq val) then polarization2:=val; elif (4 le val) then if (3 eq polarization1) then polarization1:=val; else polarization2:=val; end if; end if; end for; if (3 eq polarization2) and (4 eq polarization1) and (0 eq epsilon) then printf "%o, ",d; end if; end for;
A269321
Discriminants of real quadratic fields with 3-class tower group <81,7>.
Original entry on oeis.org
142097, 173944, 259653, 283673, 320785, 321053, 326945, 335229, 412277, 424236, 459964, 471713, 476152, 527068, 535441, 551384, 567473, 621749, 637820, 681276, 686977, 729293, 747496, 750376, 782737, 784997, 807937, 893029, 916181, 942961, 966053, 967928, 974157, 982049
Offset: 1
The two leading terms, 142097, 173944, were listed in [Mayer, 1991] (up to 2*10^5) without giving the Artin pattern. The first 34 terms of A269321 up to 10^6 have been published in [Mayer, 2009]. The first 698 terms up to 10^7 have been determined in [Mayer, 2012] and [Mayer, 2014] with erroneous counter 697 corrected by [Bush]. The 10244, resp. 122955, terms up to 10^8, resp. 10^9, have been computed by [Bush].
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a library of groups of small order, 2005, an accepted and refereed GAP package, available also in MAGMA.
- M. R. Bush, private communication, 11 July 2015.
- D. C. Mayer, List of discriminants less than 200000 of totally real cubic fields, 1991, ResearchGate.
- D. C. Mayer, All known examples for principalization types, Memorial 2009.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471-505.
- D. C. Mayer, Principalization algorithm via class group structure, J. Thèor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
- D. C. Mayer, Artin transfer patterns on descendant trees of finite p-groups, Adv. Pure Math. 6 (2016), no. 2, 66-104.
-
SetClassGroupBounds("GRH"); p:=3; dList:=A269319; for d in dList do
ZX:=PolynomialRing(Integers()); K:=NumberField(X^2-d); O:=MaximalOrder(K); C,mC:=ClassGroup(O); sS:=Subgroups(C: Quot:=[p]); sI:=[]; for j in [1..p+1] do Append(~sI,0); end for; n:=Ngens(C); g:=(Order(C.(n-1)) div p)*C.(n-1); h:=(Order(C.n) div p)*C.n; ct:=0; for x in sS do ct:=ct+1; if g in x`subgroup then sI[1]:=ct; end if; if h in x`subgroup then sI[2]:=ct; end if; for e in [1..p-1] do if g+e*h in x`subgroup then sI[e+2]:=ct; end if; end for; end for;
sA:=[AbelianExtension(Inverse(mQ)*mC) where Q,mQ:=quo: x in sS];
sN:=[NumberField(x): x in sA]; sR:=[MaximalOrder(x): x in sA];
sF:=[AbsoluteField(x): x in sN]; sM:=[MaximalOrder(x): x in sF];
sM:=[OptimizedRepresentation(x): x in sF];
sA:=[NumberField(DefiningPolynomial(x)): x in sM]; sO:=[Simplify(LLL(MaximalOrder(x))): x in sA]; TTT:=[]; epsilon:=0; polarization1:=3; polarization2:=3; for j in [1..#sO] do CO:=ClassGroup(sO[j]); Append(~TTT,pPrimaryInvariants(CO,p));
if (3 eq #pPrimaryInvariants(CO,p)) then epsilon:=epsilon+1; end if;
val:=Valuation(Order(CO),p); if (2 eq val) then polarization2:=val; elif (4 le val) then if (3 eq polarization1) then polarization1:=val; else polarization2:=val; end if; end if; end for; if (2 eq polarization2) and (3 eq polarization1) and (1 eq epsilon) then printf "%o, ",d; end if; end for;
A269322
Discriminants of real quadratic fields with second 3-class group <729,49>.
Original entry on oeis.org
534824, 1030117, 2661365, 2733965, 3194013, 3259597, 3268781, 3928632, 4006033, 4593673, 5180081, 5250941, 5327080, 5489661, 5909813, 6115852, 6290549, 7102277, 7712184, 7738629, 7758589, 7857048, 7943761, 8243113, 8747997, 8899661, 9583736, 9907837
Offset: 1
The leading term, 534824, and thus the first real quadratic field K with capitulation type c.18, (0,1,2,2), has been identified on 20 August 2009. However, it required six further years to determine the pro-3 Galois group G=<2187,291>, with metabelianization M=G/G''=<729,49>, of the Hilbert 3-class field tower of K in August 2015. The first 28 terms of A269322 up to 10^7 have been determined in [Mayer, 2012] and [Mayer, 2014]. The 347, resp. 4318, terms up to 10^8, resp. 10^9, have been computed by [Bush].
Concerning the two possibilities for the 3-class tower group, 534824 is the smallest term with associated group G=<2187,291> and 1030117 is the smallest term with associated group G=<2187,284>. (See [Mayer, 2015] for more details.)
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a library of groups of small order, 2005, an accepted and refereed GAP package, available also in MAGMA.
- M. R. Bush, private communication, 11 July 2015.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471-505.
- D. C. Mayer, Principalization algorithm via class group structure, J. Thèor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
- D. C. Mayer, New number fields with known p-class tower, Tatra Mt. Math. Publ. 64 (2015), 21-57.
- D. C. Mayer, Artin transfer patterns on descendant trees of finite p-groups, Adv. Pure Math. 6 (2016), no. 2, 66-104.
-
SetClassGroupBounds("GRH"); p:=3; dList:=A269319; for d in dList do
ZX:=PolynomialRing(Integers()); K:=NumberField(X^2-d); O:=MaximalOrder(K); C,mC:=ClassGroup(O); sS:=Subgroups(C: Quot:=[p]); sI:=[]; for j in [1..p+1] do Append(~sI,0); end for; n:=Ngens(C); g:=(Order(C.(n-1)) div p)*C.(n-1); h:=(Order(C.n) div p)*C.n; ct:=0;
for x in sS do ct:=ct+1; if g in x`subgroup then sI[1]:=ct; end if; if h in x`subgroup then sI[2]:=ct; end if; for e in [1..p-1] do if g+e*h in x`subgroup then sI[e+2]:=ct; end if; end for; end for;
sA:=[AbelianExtension(Inverse(mQ)*mC) where Q,mQ:=quo: x in sS]; sN:=[NumberField(x): x in sA]; sR:=[MaximalOrder(x): x in sA];
sF:=[AbsoluteField(x): x in sN]; sM:=[MaximalOrder(x): x in sF];
sM:=[OptimizedRepresentation(x): x in sF];
sA:=[NumberField(DefiningPolynomial(x)): x in sM]; sO:=[Simplify(LLL(MaximalOrder(x))): x in sA];
TTT:=[]; epsilon:=0; polarization1:=3; polarization2:=3; for j in [1..#sO] do CO:=ClassGroup(sO[j]); Append(~TTT,pPrimaryInvariants(CO,p));
if (3 eq #pPrimaryInvariants(CO,p)) then epsilon:=epsilon+1; end if;
val:=Valuation(Order(CO),p); if (2 eq val) then polarization2:=val; elif (4 le val) then if (3 eq polarization1) then polarization1:=val; else polarization2:=val; end if; end if; end for; if (3 eq polarization2) and (4 eq polarization1) and (1 eq epsilon) then printf "%o, ",d; end if; end for;
A329785
Discriminants of totally real cubic fields with noncyclic class group.
Original entry on oeis.org
26569, 35537, 76729, 121801, 128357, 146853, 151717, 157609, 210649, 229577, 240149, 277429, 299209, 312709, 314369, 347485, 368449, 376712, 394609, 395177, 409533, 412277, 424148, 428657, 431649, 442489, 444412, 455700, 461041, 468892, 474949
Offset: 1
Showing 1-9 of 9 results.
Comments