A269321 Discriminants of real quadratic fields with 3-class tower group <81,7>.
142097, 173944, 259653, 283673, 320785, 321053, 326945, 335229, 412277, 424236, 459964, 471713, 476152, 527068, 535441, 551384, 567473, 621749, 637820, 681276, 686977, 729293, 747496, 750376, 782737, 784997, 807937, 893029, 916181, 942961, 966053, 967928, 974157, 982049
Offset: 1
Examples
The two leading terms, 142097, 173944, were listed in [Mayer, 1991] (up to 2*10^5) without giving the Artin pattern. The first 34 terms of A269321 up to 10^6 have been published in [Mayer, 2009]. The first 698 terms up to 10^7 have been determined in [Mayer, 2012] and [Mayer, 2014] with erroneous counter 697 corrected by [Bush]. The 10244, resp. 122955, terms up to 10^8, resp. 10^9, have been computed by [Bush].
Links
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a library of groups of small order, 2005, an accepted and refereed GAP package, available also in MAGMA.
- M. R. Bush, private communication, 11 July 2015.
- D. C. Mayer, List of discriminants less than 200000 of totally real cubic fields, 1991, ResearchGate.
- D. C. Mayer, All known examples for principalization types, Memorial 2009.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471-505.
- D. C. Mayer, Principalization algorithm via class group structure, J. Thèor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
- D. C. Mayer, Artin transfer patterns on descendant trees of finite p-groups, Adv. Pure Math. 6 (2016), no. 2, 66-104.
Crossrefs
Subsequence of A269319
Programs
-
Magma
SetClassGroupBounds("GRH"); p:=3; dList:=A269319; for d in dList do ZX
:=PolynomialRing(Integers()); K:=NumberField(X^2-d); O:=MaximalOrder(K); C,mC:=ClassGroup(O); sS:=Subgroups(C: Quot:=[p]); sI:=[]; for j in [1..p+1] do Append(~sI,0); end for; n:=Ngens(C); g:=(Order(C.(n-1)) div p)*C.(n-1); h:=(Order(C.n) div p)*C.n; ct:=0; for x in sS do ct:=ct+1; if g in x`subgroup then sI[1]:=ct; end if; if h in x`subgroup then sI[2]:=ct; end if; for e in [1..p-1] do if g+e*h in x`subgroup then sI[e+2]:=ct; end if; end for; end for; sA:=[AbelianExtension(Inverse(mQ)*mC) where Q,mQ:=quo : x in sS]; sN:=[NumberField(x): x in sA]; sR:=[MaximalOrder(x): x in sA]; sF:=[AbsoluteField(x): x in sN]; sM:=[MaximalOrder(x): x in sF]; sM:=[OptimizedRepresentation(x): x in sF]; sA:=[NumberField(DefiningPolynomial(x)): x in sM]; sO:=[Simplify(LLL(MaximalOrder(x))): x in sA]; TTT:=[]; epsilon:=0; polarization1:=3; polarization2:=3; for j in [1..#sO] do CO:=ClassGroup(sO[j]); Append(~TTT,pPrimaryInvariants(CO,p)); if (3 eq #pPrimaryInvariants(CO,p)) then epsilon:=epsilon+1; end if; val:=Valuation(Order(CO),p); if (2 eq val) then polarization2:=val; elif (4 le val) then if (3 eq polarization1) then polarization1:=val; else polarization2:=val; end if; end if; end for; if (2 eq polarization2) and (3 eq polarization1) and (1 eq epsilon) then printf "%o, ",d; end if; end for;
Comments