A269323 Discriminants of real quadratic fields with second 3-class group <729,54>.
540365, 945813, 1202680, 1695260, 1958629, 3018569, 3236657, 3687441, 4441560, 5512252, 5571377, 5701693, 6027557, 6049356, 6054060, 6274609, 6366029, 6501608, 6773557, 7573868, 8243464, 8251521, 9054177, 9162577, 9967837
Offset: 1
Examples
The leading term, 540365, and thus the first real quadratic field K with capitulation type c.21, (2,0,3,4), has been identified on 01 January 2008 [Mayer, 2007/2008]. However, it required seven further years to determine the pro-3 Galois group G=<2187,307|308>, with metabelianization M=G/G''=<729,54>, of the Hilbert 3-class field tower of K in August 2015. (See [Mayer, 2015] for more details.) The first 25 terms of A269323 up to 10^7 have been determined in [Mayer, 2012] and [Mayer, 2014]. The 358, resp. 4377, terms up to 10^8, resp. 10^9, have been computed by [Bush].
Links
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a library of groups of small order, 2005, an accepted and refereed GAP package, available also in MAGMA.
- M. R. Bush, private communication, 11 July 2015.
- D. C. Mayer, The real quadratic base field K with discriminant d=540365, Targets 2007/2008.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471-505.
- D. C. Mayer, Principalization algorithm via class group structure, J. Thèor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
- D. C. Mayer, New number fields with known p-class tower, Tatra Mt. Math. Publ. 64 (2015), 21-57.
- D. C. Mayer, Artin transfer patterns on descendant trees of finite p-groups, Adv. Pure Math. 6 (2016), no. 2, 66-104.
Crossrefs
Subsequence of A269319
Programs
-
Magma
SetClassGroupBounds("GRH"); p:=3; dList:=A269319; for d in dList do ZX
:=PolynomialRing(Integers()); K:=NumberField(X^2-d); O:=MaximalOrder(K); C,mC:=ClassGroup(O); sS:=Subgroups(C: Quot:=[p]); sI:=[]; for j in [1..p+1] do Append(~sI,0); end for; n:=Ngens(C); g:=(Order(C.(n-1)) div p)*C.(n-1); h:=(Order(C.n) div p)*C.n; ct:=0; for x in sS do ct:=ct+1; if g in x`subgroup then sI[1]:=ct; end if; if h in x`subgroup then sI[2]:=ct; end if; for e in [1..p-1] do if g+e*h in x`subgroup then sI[e+2]:=ct; end if; end for; end for; sA:=[AbelianExtension(Inverse(mQ)*mC) where Q,mQ:=quo : x in sS]; sN:=[NumberField(x): x in sA]; sR:=[MaximalOrder(x): x in sA]; sF:=[AbsoluteField(x): x in sN]; sM:=[MaximalOrder(x): x in sF]; sM:=[OptimizedRepresentation(x): x in sF]; sA:=[NumberField(DefiningPolynomial(x)): x in sM]; sO:=[Simplify(LLL(MaximalOrder(x))): x in sA]; TTT:=[]; epsilon:=0; polarization1:=3; polarization2:=3; for j in [1..#sO] do CO:=ClassGroup(sO[j]); Append(~TTT,pPrimaryInvariants(CO,p)); if (3 eq #pPrimaryInvariants(CO,p)) then epsilon:=epsilon+1; end if; val:=Valuation(Order(CO),p); if (2 eq val) then polarization2:=val; elif (4 le val) then if (3 eq polarization1) then polarization1:=val; else polarization2:=val; end if; end if; end for; if (3 eq polarization2) and (4 eq polarization1) and (0 eq epsilon) then printf "%o, ",d; end if; end for;
Comments