A269364 Difference between the number of occurrences of prime gaps not divisible by 3, versus number of prime gaps that are multiples of 3, up to n-th prime gap: a(n) = A269849(n) - A269850(n).
1, 2, 3, 4, 5, 6, 7, 8, 7, 8, 7, 8, 9, 10, 9, 8, 9, 8, 9, 10, 9, 10, 9, 10, 11, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 18, 17, 18, 17, 16, 17, 18, 19, 20, 21, 20, 19, 20, 21, 22, 21, 22, 23, 22, 21, 20, 21, 20, 21, 22, 23, 24, 25, 26, 27, 28, 27, 28, 29, 30, 29, 30, 29, 28, 29, 28, 29, 30, 31, 32, 33, 34, 35, 34
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..50000
- Robert J. Lemke Oliver and Kannan Soundararajan, Unexpected biases in the distribution of consecutive primes, arXiv:1603.03720 [math.NT], 2016.
- Terence Tao, Biases between consecutive primes, blog entry March 14, 2016
Programs
-
PARI
a(n) = sum(k=1, n, ((prime(k+1) - prime(k)) % 3) != 0) - sum(k=1, n, ((prime(k+1) - prime(k)) % 3) == 0); \\ Michel Marcus, Mar 18 2016
-
Scheme
(define (A269364 n) (- (A269849 n) (A269850 n)))
Comments