cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269404 Decimal expansion of Product_{k >= 1} (1 + 1/prime(k)^6).

Original entry on oeis.org

1, 0, 1, 7, 0, 9, 2, 7, 6, 9, 1, 3, 0, 4, 9, 9, 2, 7, 6, 6, 4, 3, 2, 7, 2, 1, 3, 3, 0, 9, 7, 9, 0, 9, 9, 2, 0, 4, 9, 2, 2, 1, 9, 0, 7, 9, 4, 9, 4, 1, 0, 1, 1, 3, 4, 6, 6, 4, 6, 5, 1, 7, 9, 3, 8, 1, 8, 9, 3, 5, 3, 3, 5, 8, 3, 4, 2, 2, 7, 9, 4, 3, 1, 8, 1, 5, 1, 5, 9, 6, 4, 7, 8, 5, 0, 6, 6, 8, 9, 7, 8, 4, 5, 4, 6, 5, 1, 0, 6, 4, 0, 2, 6, 1, 3, 3, 6, 9, 3, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 25 2016

Keywords

Comments

More generally, Product_{k >= 1} (1 + 1/prime(k)^m) = zeta(m)/zeta(2*m), where zeta(m) is the Riemann zeta function.

Examples

			1.0170927691304992766432721330979099204922190794941...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6]/Zeta[12], 10, 120][[1]]
    RealDigits[675675/(691 Pi^6), 10, 120][[1]]
  • PARI
    zeta(6)/zeta(12) \\ Amiram Eldar, Jun 11 2023

Formula

Equals zeta(6)/zeta(12).
Equals 675675/(691*Pi^6).
Equals Sum_{k>=1} 1/A005117(k)^6 = 1 + Sum_{k>=1} 1/A113851(k). - Amiram Eldar, Jun 27 2020