A269427 a(1) = 1, a(n) counts m < n for which n == a(m) (mod m).
1, 1, 2, 1, 4, 1, 3, 2, 4, 3, 3, 1, 7, 4, 2, 1, 7, 3, 4, 3, 4, 2, 6, 5, 7, 3, 2, 1, 10, 1, 6, 5, 6, 3, 3, 2, 8, 5, 6, 2, 5, 4, 6, 3, 6, 7, 6, 1, 10, 3, 3, 3, 9, 3, 5, 3, 7, 5, 8, 3, 7, 4, 6, 3, 5, 4, 7, 6, 7, 3, 4, 3, 9, 8, 7, 3, 6, 1, 6, 5, 6
Offset: 1
Examples
a(1) = 1; a(2) = 1 because 2 == a(1) (mod 1); a(3) = 2 because 3 == a(1) (mod 1) and 3 == a(2) (mod 2); a(4) = 1 because 4 == a(1) (mod 1); a(5) = 4 because 5 == a(1) (mod 1), 5 == a(2) (mod 2), 5 == a(3) (mod 3), and 5 == a(4) (mod 4).
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A269423.
Programs
-
Java
int[] terms = new int[10000]; terms[0] = 1; for (int i = 1; i < 10000; i++) { int count = 0; for (int j = 0; j < i; j++) { if (((i+1) - terms[j]) % (j+1) == 0) { count++; } } terms[i] = count; }
-
Maple
N:= 200: # to get a(1) to a(N) A:= Vector(N,1): for m from 2 to N-1 do S:= [seq(A[m]+m*i,i=1..floor((N-A[m])/m))]; A[S]:= map(`+`,A[S],1); od: convert(A,list); # Robert Israel, Mar 21 2016
-
Mathematica
a[1] = 1; a[n_] := a[n] = Count[Range[n - 1], m_ /; Mod[a[m], m] == Mod[n, m]]; Table[a@ n, {n, 81}] (* Michael De Vlieger, Mar 21 2016 *)
-
PARI
lista(nn) = {va = vector(nn); print1(va[1] = 1, ", "); for (n=2, nn, va[n] = sum(m=1, n-1, (Mod(va[m], m) == Mod(n, m))); print1(va[n], ", "););} \\ Michel Marcus, Feb 26 2016
Comments