A269448 The first of 26 consecutive positive integers the sum of the squares of which is a square.
25, 301, 454, 3850, 31966, 47569, 393925, 3261481, 4852834, 40177750, 332640346, 494942749, 4097737825, 33926055061, 50479308814, 417929081650, 3460124977126, 5148394557529, 42624668591725, 352898821613041, 525085765560394, 4347298267275550
Offset: 1
Examples
25 is in the sequence because sum(k=25, 50, k^2) = 38025 = 195^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,102,-102,0,-1,1).
Programs
-
Mathematica
Rest@ CoefficientList[Series[x (25 + 276 x + 153 x^2 + 846 x^3 - 36 x^4 - 3 x^5 - 11 x^6)/((1 - x) (1 - 102 x^3 + x^6)), {x, 0, 22}], x] (* Michael De Vlieger, Aug 07 2016 *)
-
PARI
Vec(x*(25+276*x+153*x^2+846*x^3-36*x^4-3*x^5-11*x^6)/((1-x)*(1-102*x^3+x^6)) + O(x^30))
Formula
G.f.: x*(25+276*x+153*x^2+846*x^3-36*x^4-3*x^5-11*x^6) / ((1-x)*(1-102*x^3+x^6)).
a(1)=25, a(2)=301, a(3)=454, a(4)=3850, a(5)=31966, a(6)=47569, a(n)=102*a(n-3) - a(n-6) + 1250. - Daniel Mondot, Aug 05 2016
Comments