A269447 The first of 23 consecutive positive integers the sum of the squares of which is a square.
7, 17, 881, 1351, 42787, 65337, 2053401, 3135331, 98520967, 150431057, 4726953521, 7217555911, 226795248547, 346292253177, 10881444977241, 16614810597091, 522082563659527, 797164616407697, 25049081610680561, 38247286776972871, 1201833834749007907
Offset: 1
Examples
7 is in the sequence because sum(k=7, 29, k^2) = 8464 = 92^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,48,-48,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,48,-48,-1,1},{7,17,881,1351,42787},30] (* Harvey P. Dale, May 21 2024 *)
-
PARI
Vec(x*(7+10*x+528*x^2-10*x^3-29*x^4)/((1-x)*(1-48*x^2+x^4)) + O(x^30))
Formula
a(n) = a(n-1)+48*a(n-2)-48*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: x*(7+10*x+528*x^2-10*x^3-29*x^4) / ((1-x)*(1-48*x^2+x^4)).
a(1)=7, a(2)=17, a(3)=881, a(4)=1351, a(n) = 48*a(n-2)-a(n-4)+506. - Daniel Mondot, Aug 05 2016
Comments