A269447
The first of 23 consecutive positive integers the sum of the squares of which is a square.
Original entry on oeis.org
7, 17, 881, 1351, 42787, 65337, 2053401, 3135331, 98520967, 150431057, 4726953521, 7217555911, 226795248547, 346292253177, 10881444977241, 16614810597091, 522082563659527, 797164616407697, 25049081610680561, 38247286776972871, 1201833834749007907
Offset: 1
7 is in the sequence because sum(k=7, 29, k^2) = 8464 = 92^2.
-
LinearRecurrence[{1,48,-48,-1,1},{7,17,881,1351,42787},30] (* Harvey P. Dale, May 21 2024 *)
-
Vec(x*(7+10*x+528*x^2-10*x^3-29*x^4)/((1-x)*(1-48*x^2+x^4)) + O(x^30))
A269448
The first of 26 consecutive positive integers the sum of the squares of which is a square.
Original entry on oeis.org
25, 301, 454, 3850, 31966, 47569, 393925, 3261481, 4852834, 40177750, 332640346, 494942749, 4097737825, 33926055061, 50479308814, 417929081650, 3460124977126, 5148394557529, 42624668591725, 352898821613041, 525085765560394, 4347298267275550
Offset: 1
25 is in the sequence because sum(k=25, 50, k^2) = 38025 = 195^2.
-
Rest@ CoefficientList[Series[x (25 + 276 x + 153 x^2 + 846 x^3 - 36 x^4 - 3 x^5 - 11 x^6)/((1 - x) (1 - 102 x^3 + x^6)), {x, 0, 22}], x] (* Michael De Vlieger, Aug 07 2016 *)
-
Vec(x*(25+276*x+153*x^2+846*x^3-36*x^4-3*x^5-11*x^6)/((1-x)*(1-102*x^3+x^6)) + O(x^30))
A269449
The first of 33 consecutive positive integers the sum of the squares of which is a square.
Original entry on oeis.org
7, 27, 60, 181, 227, 612, 1085, 1985, 3492, 9047, 11161, 28860, 50607, 91987, 161276, 416685, 513883, 1327652, 2327541, 4230121, 7415908, 19159167, 23628161, 61043836, 107016983, 194494283, 340971196, 880905701, 1086382227, 2806689508, 4920454381, 8942507601
Offset: 1
7 is in the sequence because sum(k=7, 39, k^2) = 20449 = 143^2.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,46,-46,0,0,0,0,-1,1).
-
Rest@ CoefficientList[Series[x (7 + 20 x + 33 x^2 + 121 x^3 + 46 x^4 + 385 x^5 + 151 x^6 - 20 x^7 - 11 x^8 - 11 x^9 - 2 x^10 - 11 x^11 - 4 x^12)/((1 - x) (1 - 46 x^6 + x^12)), {x, 0, 32}], x] (* Michael De Vlieger, Aug 08 2016 *)
LinearRecurrence[{1,0,0,0,0,46,-46,0,0,0,0,-1,1},{7,27,60,181,227,612,1085,1985,3492,9047,11161,28860,50607},50] (* Harvey P. Dale, Oct 18 2020 *)
-
Vec(x*(7 +20*x +33*x^2 +121*x^3 +46*x^4 +385*x^5 +151*x^6 -20*x^7 -11*x^8 -11*x^9 -2*x^10 -11*x^11 -4*x^12) / ((1 -x)*(1 -46*x^6 +x^12)) + O(x^40))
Showing 1-3 of 3 results.
Comments