cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A384125 Array read by antidiagonals: T(n,m) is the number of edges in the n X m rook graph K_n X K_m.

Original entry on oeis.org

0, 1, 1, 3, 4, 3, 6, 9, 9, 6, 10, 16, 18, 16, 10, 15, 25, 30, 30, 25, 15, 21, 36, 45, 48, 45, 36, 21, 28, 49, 63, 70, 70, 63, 49, 28, 36, 64, 84, 96, 100, 96, 84, 64, 36, 45, 81, 108, 126, 135, 135, 126, 108, 81, 45, 55, 100, 135, 160, 175, 180, 175, 160, 135, 100, 55
Offset: 1

Views

Author

Andrew Howroyd, May 20 2025

Keywords

Examples

			Array begins:
=======================================
n\m |  1  2   3   4   5   6   7   8 ...
----+----------------------------------
  1 |  0  1   3   6  10  15  21  28 ...
  2 |  1  4   9  16  25  36  49  64 ...
  3 |  3  9  18  30  45  63  84 108 ...
  4 |  6 16  30  48  70  96 126 160 ...
  5 | 10 25  45  70 100 135 175 220 ...
  6 | 15 36  63  96 135 180 231 288 ...
  7 | 21 49  84 126 175 231 294 364 ...
  8 | 28 64 108 160 220 288 364 448 ...
  ...
		

Crossrefs

Main diagonal is A045991.
Columns 1..6 are A000217(n-1), A000290, A045943, A054000, A269457(n-1), A067707.
Cf. A003991 (number of vertices), A360855 (triangles), A384120 (all cliques).

Programs

  • Mathematica
    Table[#*Binomial[m, 2] + m*Binomial[#, 2] &[n - m + 1], {n, 11}, {m, n}] // Flatten (* Michael De Vlieger, May 22 2025 *)
  • PARI
    T(n,m) = n*binomial(m,2) + m*binomial(n,2)

Formula

T(n,m) = n*binomial(m,2) + m*binomial(n,2).
T(n,m) = binomial(n*m,2) - 2*binomial(n,2)*binomial(m,2).
T(n,m) = T(m,n).
Showing 1-1 of 1 results.