A269499 Nontrivial integer solutions s to the equations Sum_{i} ((-1)^i)*binomial(m,i)*binomial(s-m,t-i) = 0 listed in increasing order.
36, 66, 67, 98, 132, 177, 214, 289, 345, 465, 514, 576, 774, 932, 1029, 1219, 1252
Offset: 1
Examples
36=14+22 belongs to the sequence because Sum_{i=0..5} (((-1)^i)*binomial(14, i)*binomial(22,5-i)) = 0, both 5 and 14 are less than 18 and (14,36,5) is not in one of the above trivial families.
Links
- René Gy, Trying to solve the equation Sum_{i}(-1)^i*binomial(m,i)*binomial(n-m,t-i)=0 for non-negative integers m,n,t, Math StackExchange.
- L. Habsieger and D. Stanton, More Zeros of Krawtchouk Polynomials, IMA Preprint Series #441, August 1988.
- I. Krasikov, On Integral Zeros of Krawtchouk Polynomials, Journal of Combinatorial Theory, Series A 74, 71-99 (1996).
Programs
-
Mathematica
f[n_,m_,t_]:= Sum[(-1)^i*Binomial[m, i]*Binomial[n-m,t-i],{i,0,t}];lim=200; list={}; Do[ Do[Do [If[ Mod[n,8]==1&& t==2*Quotient[n,8],Continue,If[f[n,m,t]==0 ,AppendTo[list,n]]],{t,4,m}] ,{m,4,n/2-1}],{n,10,lim}];Print [Union [list]]
-
PARI
isok(s) = {for (m=4, s\2-1, for (t=4, m, if (!(((s % 8) == 1) && (t == 2*(s\8))), if (sum(i=0, t, (-1)^i*binomial(m, i)*binomial(s-m, t-i)) == 0, return (1)););););} \\ Michel Marcus, Mar 01 2016
Extensions
a(16)-a(17) from Michel Marcus, Apr 04 2016
Comments