A269548 Expansion of (-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
-1, -233, -22961, -2250073, -220484321, -21605213513, -2117090440081, -207453257914553, -20328302185186241, -1991966160890337193, -195192355465067858801, -19126858869415759825433, -1874236976847279395033761, -183656096872163964953483273, -17996423256495221286046327121
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
Crossrefs
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016 -
Mathematica
CoefficientList[Series[(-7 x^2 + 134 x + 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[4/3 + ((3 Sqrt[6] - 7)/(2 Sqrt[6] + 5)^(2 n) - (3 Sqrt[6] + 7) (2 Sqrt[6] + 5)^(2 n))/6], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
-
PARI
Vec((-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
Sage
gf = (-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1) print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
Formula
G.f.: (-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 4/3 + ((3*sqrt(6) - 7)/(2*sqrt(6) + 5)^(2*n) - (3*sqrt(6) + 7)*(2*sqrt(6) + 5)^(2*n))/6. - Bruno Berselli, Mar 01 2016
Comments