A269549 Expansion of (-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1).
1, -199, -19799, -1940399, -190139599, -18631740599, -1825720439399, -178901971320799, -17530567468999199, -1717816709990600999, -168328507011609898999, -16494475870427779501199, -1616290306794910781218799, -158379955590030828779941399, -15519619357516226309653038599
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
Crossrefs
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((-x^2+298*x-1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016 -
Mathematica
CoefficientList[Series[(-x^2 + 298 x - 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[37/12 + ((2 Sqrt[6] - 5)/(2 Sqrt[6] + 5)^(2 n) - (2 Sqrt[6] + 5) (2 Sqrt[6] + 5)^(2 n)) 5/24], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
-
PARI
Vec((-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
Sage
gf = (-x^2+298*x-1)/(x^3-99*x^2+99*x-1) print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
Formula
G.f.: (-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 37/12 + ((2*sqrt(6) - 5)/(2*sqrt(6) + 5)^(2*n) - (2*sqrt(6) + 5)*(2*sqrt(6) + 5)^(2*n))*5/24. - Bruno Berselli, Mar 01 2016
Comments