A269556 Expansion of (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1).
5, 347, 33865, 3318287, 325158125, 31862177827, 3122168268785, 305940628162967, 29979059391701845, 2937641879758617707, 287858925156952833305, 28207237023501619046047, 2764021369378001713679165, 270845886962020666321511987, 26540132900908647297794495425, 2600662178402085414517539039527
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
Crossrefs
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016 -
Mathematica
CoefficientList[Series[(-7 x^2 + 148 x - 5)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[17/12 + (-(17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) + (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *)
-
PARI
Vec((-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
Sage
gf = (-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1) print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 02 2016
Formula
G.f.: (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 17/12 + (-(17*sqrt(6) - 43)/(2*sqrt(6) + 5)^(2*n) + (17*sqrt(6) + 43)*(2 sqrt(6) + 5)^(2*n))/24. - Bruno Berselli, Mar 02 2016
Comments