A269591 Digits of one of the two 5-adic integers sqrt(-4).
1, 2, 0, 2, 3, 0, 4, 2, 3, 3, 4, 4, 3, 1, 1, 3, 4, 0, 3, 1, 2, 0, 3, 1, 1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 4, 3, 2, 2, 3, 2, 4, 4, 0, 3, 1, 4, 0, 3, 3, 1, 0, 1, 3, 3, 2, 3, 3, 3, 4, 4, 3, 1, 3, 1
Offset: 0
Examples
a(4) = 3 because 2*261*3 + 109 = 1675 == 0 (mod 5). a(4) = - 109*(2*261)^3 (mod 5) = -(-1)*(2*1)^3 (mod 5) = 8 (mod 5) = 3. A268922(5) = 2136 = 1*5^0 + 2*5^1 + 0*5^2 + 2*5^3 + 3*5^4.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- BCMATH Congruence Programs, Finding a p-adic square root of a quadratic residue (mod p), p an odd prime.
Programs
-
PARI
a(n) = truncate(sqrt(-4+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 04 2016
Comments