cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A114525 Triangle of coefficients of the Lucas (w-)polynomials.

Original entry on oeis.org

2, 0, 1, 2, 0, 1, 0, 3, 0, 1, 2, 0, 4, 0, 1, 0, 5, 0, 5, 0, 1, 2, 0, 9, 0, 6, 0, 1, 0, 7, 0, 14, 0, 7, 0, 1, 2, 0, 16, 0, 20, 0, 8, 0, 1, 0, 9, 0, 30, 0, 27, 0, 9, 0, 1, 2, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 0, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 2, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 06 2005

Keywords

Comments

Unsigned version of A108045.
The row reversed triangle is A162514. - Paolo Bonzini, Jun 23 2016

Examples

			2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5, ... give triangle
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  0:    2
  1:    0  1
  2:    2  0  1
  3:    0  3  0  1
  4:    2  0  4  0  1
  5:    0  5  0  5  0  1
  6:    2  0  9  0  6  0  1
  7:    0  7  0 14  0  7  0  1
  8:    2  0 16  0 20  0  8  0  1
  9:    0  9  0 30  0 27  0  9  0  1
  10:   2  0 25  0 50  0 35  0 10  0  1
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  .... reformatted by _Wolfdieter Lang_, Feb 10 2023
		

Crossrefs

Cf. A108045 (signed version).
Cf. Sequences L(n,x): A000032(x = 1), A002203 (x = 2), A006497 (x = 3), A014448 (x = 4), A087130 (x = 5), A085447 (x = 6), A086902 (x = 7), A086594 (x = 8), A087798 (x = 9), A086927 (x = 10), A001946 (x = 11), A086928 (x = 12), A088316 (x = 13), A090300 (x = 14), A090301 (x = 15), A090305 (x = 16), A090306 (x = 17), A090307 (x = 18), A090308 (x = 19), A090309 (x = 20), A090310 (x = 21), A090313 (x = 22), A090314 (x = 23), A090316 (x = 24), A087281 (x = 29), A087287 (x = 76), A089772 (x = 199).

Programs

  • Maple
    Lucas := proc(n,x)
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
    end proc:
    A114525 := proc(n,k)
        coeftayl(Lucas(n,x),x=0,k) ;
    end proc:
    seq(seq(A114525(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    row[n_] := CoefficientList[LucasL[n, x], x];
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 11 2018 *)

Formula

From Peter Bala, Mar 18 2015: (Start)
The Lucas polynomials L(n,x) satisfy the recurrence L(n+1,x) = x*L(n,x) + L(n-1,x) with L(0,x) = 2 and L(1,x) = x.
O.g.f.: Sum_{n >= 0} L(n,x)*t^n = (2 - x*t)/(1 - t^2 - x*t) = 2 + x*t + (x^2 + 2)*t^2 + (3*x + x^3)*t^3 + ....
L(n,x) = trace( [ x, 1; 1, 0 ]^n ).
exp( Sum_{n >= 1} L(n,x)*t^n/n ) = Sum_{n >= 0} F(n+1,x)*t^n, where F(n,x) denotes the n-th Fibonacci polynomial. (see Appendix A3 in Johnson).
exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*t^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)*F(n+3,x)*t^n.
exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n.
L(n,1) = Lucas(n) = A000032(n); L(n,4) = Lucas(3*n) = A014448(n); L(n,11) = Lucas(5*n) = A001946(n); L(n,29) = Lucas(7*n) = A087281(n); L(n,76) = Lucas(9*n) = A087287(n); L(n,199) = Lucas(11*n) = A089772(n). The general result is L(n,Lucas(2*k + 1)) = Lucas((2*k + 1)*n). (End)
From Jeremy Dover, Jun 10 2016: (Start)
Read as a triangle T(n,k), n >= 0, n >= k >= 0, T(n,k) = (Binomial((n+k)/2,k) + Binomial((n+k-2)/2,k))*(1+(-1)^(n-k))/2.
T(n,k) = A046854(n-1,k-1) + A046854(n-1,k) + A046854(n-2,k) for even n+k with n+k > 0, assuming A046854(n,k) = 0 for n < 0, k < 0, k > n.
T(n,k) is the number of binary strings of length n with exactly k pairs of consecutive 0's and no pair of consecutive 1's, where the first and last bits are considered consecutive. (End)
From Peter Bala, Sep 03 2022: (Start)
L(n,x) = 2*(i)^n*T(n,-i*x/2), where i = sqrt(-1) and T(n,x) is the n-th Chebyshev polynomial of the first kind.
d/dx(L(n,x)) = n*F(n,x), where F(n,x) denotes the n-th Fibonacci polynomial.
Let P_n(x,y) = (L(n,x) - L(n,y))/(x - y). Then {P_n(x,y): n >= 1} is a fourth-order linear divisibility sequence of polynomials in the ring Z[x,y]: if m divides n in Z then P_m(x,y) divides P_n(x,y) in Z[x,y].
P_n(1,1) = A045925(n); P_n(1,4) = A273622; P_n(2,2) = A093967(n).
L(2*n,x)^2 - L(2*n-1,x)*L(2*n+1,x) = x^2 + 4 for n >= 1.
Sum_{n >= 1} L(2*n,x)/( L(2*n-1,x) * L(2*n+1,x) ) = 1/x^2 and
Sum_{n >= 1} (-1)^(n+1)/( L(2*n,x) + x^2/L(2*n,x) ) = 1/(x^2 + 4), both valid for all nonzero real x. (End)
From Peter Bala, Nov 18 2022: (Start)
L(n,x) = Sum_{k = 0..floor(n/2)} (n/(n-k))*binomial(n-k,k)*x^(n-2*k) for n >= 1.
For odd m, L(n, L(m,x)) = L(n*m, x).
For integral x, the sequence {u(n)} := {L(n,x)} satisfies the Gauss congruences: u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all positive integers m and r and all primes p.
Let p be an odd prime and let 0 <= k <= p - 1. Let alpha_k = the p-adic limit_{n -> oo} L(p^n,k). Then alpha_k is a well-defined p-adic-integer and the polynomial L(p,x) - x of degree p factorizes as L(p,x) - x = Product_{k = 0..p-1} (x - alpha_k). For example, L(5,x) - x = x^5 + 5*x^3 + 4*x = x*(x - A269591)*(x - A210850)*(x - A210851)*(x - A269592) in the ring of 5-adic integers. (End)
The formula for L(n,x) given in the first line of the preceding section, with L(0, x) = 2, is rewritten L(n, x) = Sum_{k = 0..floor(n/2)} A034807(n, k)*x^(n - 2*k). See the formula by Alexander Elkins in A034807. - Wolfdieter Lang, Feb 10 2023

A268922 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-4). These are the 1 mod 5 numbers, except for n = 0.

Original entry on oeis.org

0, 1, 11, 11, 261, 2136, 2136, 64636, 220886, 1392761, 7252136, 46314636, 241627136, 974049011, 2194752136, 8298267761, 99851002136, 710202564636, 710202564636, 12154294361511, 31227780689636
Offset: 0

Views

Author

Wolfdieter Lang, Mar 02 2016

Keywords

Comments

The other approximation for the 5-adic integer sqrt(-4) with numbers 4 (mod 5) is given in A269590.
For the two approximations of the 5-adic integer sqrt(-1) see A048899 and A048898. For comments and some proofs see A210848.
For the digits of this 5-adic integer sqrt(-4), that is the scaled first differences, see A269591. This 5-adic number has the digits read from the right to the left ...32234111132111101130213043113443324032021 = u.
The companion 5-adic number -u has digits ....12210333312333343314231401331001120412424. See A269592.
The recurrence given below (for n >= 1) has been derived from the following facts (i) x^2 + 4 == 0 (mod 5) has the two distinct solutions x(1) = 1 and x(2) = 5 - x(1) = 4. This guarantees the existence of a unique solution x = x1(n) of x^2 + 4 == 0 (mod 5^n) , for n >= 2 , which satisfies also x1(n) == 1 (mod 5). See e.g., Theorem 50, p. 87 of the Nagell reference. The same is true for the solution x = x2(n) with x2(n) == 4 (mod 5^n). (ii) As a consequence of Hensel's lemma (see e.g., the Wikipedia reference under Hensel lifting) one knows that x1(n) (which is treated here) satisfies the congruence x1(n) == x1(n-1) (mod 5^(n-1)) with x1(1) = x1 = 1. (A similar statement holds for x2(n) with input x2(1) = x(2) = 4. This is used in A269590). These two facts allow one to derive a recurrence for x1(n) (and for x2(n)).

Examples

			n=2:  11^2 + 4 = 125  == 0 (mod 5^2), and 125 is the only solution from {0, 1, ..., 24} which is congruent to 1 modulo 5.
n=3:  the only solution of x1^2 + 4 == 0 (mod 5^3) with x1 from {0, ..., 124} and x1 ==  1 (mod 4) is also 11. The number 114 satisfies also the first congruence but not the second one: 114 == 2 (mod 4).
		

References

  • Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, p. 87.

Crossrefs

Programs

  • Maple
    with(padic):D1:=op(3,op([evalp(RootOf(x^2+4),5,20)][1])): 0,seq(sum('D1[k]*5^(k-1)','k'=1..n), n=1..20);
    # alternative program - see A144837
    a := proc (n) option remember; if n = 1 then 1 else irem( a(n-1)^5 + 5*a(n-1)^3 + 5*a(n-1), 5^n) end if; end: seq(a(n), n = 1..20); # Peter Bala, Nov 14 2022
  • PARI
    a(n) = truncate(sqrt(-4+O(5^(n)))); \\ Michel Marcus, Mar 04 2016

Formula

Recurrence for n >= 1: a(n) = modp( a(n-1) + 2*(a(n-1)^2 + 4), 5^n), n >= 2, with a(1) = 1. Here modp(a, m) is used to pick the representative of the residue class a modulo m from the smallest nonnegative complete residue system {0, 1, ... , m-1}.
a(n) = 5^n - A269590(n), n >= 1.
a(n) == Lucas(5^n) (mod 5^n). - Peter Bala, Nov 10 2022

A269592 Digits of one of the two 5-adic integers sqrt(-4). Here the ones related to A269590.

Original entry on oeis.org

4, 2, 4, 2, 1, 4, 0, 2, 1, 1, 0, 0, 1, 3, 3, 1, 0, 4, 1, 3, 2, 4, 1, 3, 3, 4, 3, 3, 3, 3, 2, 1, 3, 3, 3, 3, 0, 1, 2, 2, 1, 2, 0, 0, 4, 1, 3, 0, 4, 1, 1, 3, 4, 3, 1, 1, 2, 1, 1, 1, 0, 0, 1, 3, 1, 3
Offset: 0

Views

Author

Wolfdieter Lang, Mar 02 2016

Keywords

Comments

This is the scaled first difference sequence of A269590.
The digits of the other 5-adic integer sqrt(-4), are given in A269591. See also A268922 for the two 5-adic numbers -u and u.
a(n) is the unique solution of the linear congruence 2*A269590(n)*a(n) + A269594(n) == 0 (mod 5), n>=1. Therefore only the values 0, 1, 2, 3 and 4 appear. See the Nagell reference given in A268922, eq. (6) on p. 86, adapted to this case. a(0) = 4 follows from the formula given below.

Examples

			a(4) = -212*(2*364)^3 (mod 5) = -2*(2*(-1))^3 (mod 5) = 1.
		

Crossrefs

Cf. A269590, A269591 (companion), A269594.

Programs

  • PARI
    a(n) = truncate(-sqrt(-4+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 04 2016

Formula

a(n) = (b(n+1) - b(n))/5^n, n>=0, with b(n) = A269590(n), n >= 0.
a(n) = -A269594(n)*(2*A269590(n))^3 (mod 5), n >= 1. Solution of the linear congruence see, e.g., Nagell, Theorem 38 pp. 77-78.
A269590(n+1) = sum(a(k)*5^k, k=0..n), n>=0.
a(n) = 4 - A269591(n) if n > 0 and a(0) = 5 - A269591(0) = 5-4 = 1. - Michel Marcus, Mar 31 2016

A269590 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-4). These are the 4 mod 5 numbers (except for n=0).

Original entry on oeis.org

0, 4, 14, 114, 364, 989, 13489, 13489, 169739, 560364, 2513489, 2513489, 2513489, 246654114, 3908763489, 22219310364, 52736888489, 52736888489, 3104494700989, 6919191966614
Offset: 0

Views

Author

Wolfdieter Lang, Mar 02 2016

Keywords

Comments

The other approximation for the 5-adic integer sqrt(-4) with numbers 1 (mod 5) is given in A268922. See this also for more details and references.
For the digits of this 5-adic integer sqrt(-4), that is the scaled first differences, see A269592. See also A268922 for the 5-adic numbers u and -u written from the right to the left.

Crossrefs

Programs

  • Maple
    with(padic): D2:=op(3,op([evalp(RootOf(x^2+4),5,20)][2])):
    0,seq(sum('D2[k]*5^(k-1)','k'=1..n),n=1..20);
    # alternative program
    a := proc(n) option remember; if n = 1 then 4 else irem( a(n-1)^5 + 5*a(n-1)^3 + 5*a(n-1), 5^n) end if; end: seq(a(n), n = 1..20); # Peter Bala, Nov 14 2022
  • PARI
    a(n) = if (n==0, 0, 5^n - truncate(sqrt(-4+O(5^(n))))); \\ Michel Marcus, Mar 07 2016

Formula

Recurrence for n >= 1: a(n) = modp( a(n-1) + 3*(a(n-1)^2 + 4), 5^n), n >= 2, with a(1) = 4. Here modp(a, m) is used to pick the representative of the residue class a modulo m from the smallest nonnegative complete residue system {0, 1, ... , m-1}.
a(n) = 5^n - A268922(n), n >= 1.
a(n) == Lucas(3*(5^n)) (mod 5^n). - Peter Bala, Nov 14 2022

A309443 Coefficients in 5-adic expansion of 4^(1/3).

Original entry on oeis.org

4, 1, 2, 4, 4, 3, 3, 4, 0, 4, 2, 1, 1, 1, 4, 2, 2, 3, 3, 2, 3, 4, 2, 3, 2, 0, 3, 4, 2, 1, 4, 3, 3, 3, 4, 4, 0, 3, 2, 0, 0, 2, 4, 2, 3, 4, 4, 1, 4, 4, 1, 3, 1, 2, 2, 0, 3, 0, 1, 1, 3, 2, 0, 0, 0, 1, 2, 1, 4, 2, 1, 0, 4, 0, 2, 1, 4, 0, 0, 3, 1, 0, 4, 1, 2, 4, 2, 0, 1, 4, 4
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2019

Keywords

Crossrefs

Cf. A309444.
Digits of p-adic integers:
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3)).

Programs

  • Maple
    op([1,3], padic:-rootp(x^3-4,5,101)); # Robert Israel, Aug 04 2019
  • PARI
    Vecrev(digits(truncate((4+O(5^100))^(1/3)), 5))
  • Ruby
    require 'OpenSSL'
    def f_a(ary, a)
      (0..ary.size - 1).inject(0){|s, i| s + ary[i] * a ** i}
    end
    def df(ary)
      (1..ary.size - 1).map{|i| i * ary[i]}
    end
    def A(c_ary, k, m, n)
      x = OpenSSL::BN.new((-f_a(df(c_ary), k)).to_s).mod_inverse(m).to_i % m
      f_ary = c_ary.map{|i| x * i}
      f_ary[1] += 1
      d_ary = []
      ary = [0]
      a, mod = k, m
      (n + 1).times{|i|
        b = a % mod
        d_ary << (b - ary[-1]) / m ** i
        ary << b
        a = f_a(f_ary, b)
        mod *= m
      }
      d_ary
    end
    def A309443(n)
      A([-4, 0, 0, 1], 4, 5, n)
    end
    p A309443(100)
    

A318962 Digits of one of the two 2-adic integers sqrt(-7) that ends in 01.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Over the 2-adic integers there are 2 solutions to x^2 = -7, one ends in 01 and the other ends in 11. This sequence gives the former one. See A318960 for detailed information.

Examples

			...10110001110011100100110001100000010110101.
		

Crossrefs

Cf. A318960.
Digits of p-adic integers:
this sequence, A318963 (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A212152, A212155 (7-adic, (1+sqrt(-3))/2);
A051277, A290558 (7-adic, sqrt(2));
A286838, A286839 (13-adic, sqrt(-1));
A309989, A309990 (17-adic, sqrt(-1)).
Also there are numerous sequences related to digits of 10-adic integers.

Programs

  • PARI
    a(n) = truncate(-sqrt(-7+O(2^(n+2))))\2^n

Formula

a(0) = 1, a(1) = 0; for n >= 2, a(n) = 0 if A318960(n)^2 + 7 is divisible by 2^(n+2), otherwise 1.
a(n) = 1 - A318963(n) for n >= 1.
For n >= 2, a(n) = (A318960(n+1) - A318960(n))/2^n.

Extensions

Corrected by Jianing Song, Aug 28 2019

A318963 Digits of one of the two 2-adic integers sqrt(-7) that ends in 11.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Over the 2-adic integers there are 2 solutions to x^2 = -7, one ends in 01 and the other ends in 11. This sequence gives the latter one. See A318961 for detailed information.

Examples

			...01001110001100011011001110011111101001011.
		

Crossrefs

Cf. A318961.
Digits of p-adic integers:
A318962, this sequence (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A212152, A212155 (7-adic, (1+sqrt(-3))/2);
A051277, A290558 (7-adic, sqrt(2));
A286838, A286839 (13-adic, sqrt(-1));
A309989, A309990 (17-adic, sqrt(-1)).
Also there are numerous sequences related to digits of 10-adic integers.

Programs

  • PARI
    a(n) = if(n==1, 1, truncate(sqrt(-7+O(2^(n+2))))\2^n)

Formula

a(0) = a(1) = 1; for n >= 2, a(n) = 0 if A318961(n)^2 + 7 is divisible by 2^(n+2), otherwise 1.
a(n) = 1 - A318962(n) for n >= 1.
For n >= 2, a(n) = (A318961(n+1) - A318961(n))/2^n.

Extensions

Corrected by Jianing Song, Aug 28 2019

A324025 Digits of one of the two 5-adic integers sqrt(6) that is related to A324023.

Original entry on oeis.org

1, 3, 0, 4, 2, 1, 2, 3, 1, 3, 3, 0, 3, 3, 2, 3, 2, 2, 2, 4, 3, 3, 1, 4, 0, 1, 2, 0, 0, 0, 3, 3, 1, 4, 1, 0, 1, 2, 4, 1, 4, 1, 1, 0, 2, 4, 4, 3, 0, 2, 3, 4, 1, 1, 4, 3, 4, 2, 4, 2, 1, 1, 2, 4, 4, 3, 2, 3, 1, 1, 0, 1, 4, 2, 3, 4, 4, 4, 4, 0, 3, 3, 1, 2, 3, 2, 3, 1
Offset: 0

Views

Author

Jianing Song, Sep 07 2019

Keywords

Comments

This square root of 6 in the 5-adic field ends with digit 1. The other, A324026, ends with digit 4.

Examples

			The solution to x^2 == 6 (mod 5^4) such that x == 1 (mod 5) is x == 516 (mod 5^4), and 516 is written as 4031 in quinary, so the first four terms are 1, 3, 0 and 4.
		

Crossrefs

Digits of 5-adic square roots:
A324029, A324030 (sqrt(-6));
A269591, A269592 (sqrt(-4));
A210850, A210851 (sqrt(-1));
this sequence, A324026 (sqrt(6)).

Programs

  • PARI
    a(n) = truncate(sqrt(6+O(5^(n+1))))\5^n

Formula

a(n) = (A324023(n+1) - A324023(n))/5^n.
For n > 0, a(n) = 4 - A324026(n).
Equals A210850*A324030 = A210851*A324029, where each A-number represents a 5-adic number.

A324026 Digits of one of the two 5-adic integers sqrt(6) that is related to A324024.

Original entry on oeis.org

4, 1, 4, 0, 2, 3, 2, 1, 3, 1, 1, 4, 1, 1, 2, 1, 2, 2, 2, 0, 1, 1, 3, 0, 4, 3, 2, 4, 4, 4, 1, 1, 3, 0, 3, 4, 3, 2, 0, 3, 0, 3, 3, 4, 2, 0, 0, 1, 4, 2, 1, 0, 3, 3, 0, 1, 0, 2, 0, 2, 3, 3, 2, 0, 0, 1, 2, 1, 3, 3, 4, 3, 0, 2, 1, 0, 0, 0, 0, 4, 1, 1, 3, 2, 1, 2, 1, 3
Offset: 0

Views

Author

Jianing Song, Sep 07 2019

Keywords

Comments

This square root of 6 in the 5-adic field ends with digit 4. The other, A324025, ends with digit 1.

Examples

			The solution to x^2 == 6 (mod 5^4) such that x == 4 (mod 5) is x == 109 (mod 5^4), and 109 is written as 414 in quinary, so the first four terms are 4, 1, 4 and 0.
		

Crossrefs

Digits of 5-adic square roots:
A324029, A324030 (sqrt(-6));
A269591, A269592 (sqrt(-4));
A210850, A210851 (sqrt(-1));
A324025, this sequence (sqrt(6)).

Programs

  • PARI
    a(n) = truncate(-sqrt(6+O(5^(n+1))))\5^n

Formula

a(n) = (A324024(n+1) - A324024(n))/5^n.
For n > 0, a(n) = 4 - A324025(n).
Equals A210850*A324029 = A210851*A324030, where each A-number represents a 5-adic number.

A309989 Digits of one of the two 17-adic integers sqrt(-1).

Original entry on oeis.org

4, 2, 10, 5, 12, 16, 12, 8, 13, 3, 14, 0, 6, 1, 0, 15, 1, 8, 14, 5, 7, 16, 14, 1, 5, 13, 9, 6, 5, 12, 16, 15, 9, 16, 14, 12, 16, 1, 3, 6, 4, 10, 15, 5, 16, 12, 2, 1, 5, 4, 0, 15, 2, 11, 14, 9, 5, 1, 11, 16, 15, 7, 5, 6, 14, 3, 12, 0, 0, 11, 12, 13, 9, 5, 4, 16, 13
Offset: 0

Views

Author

Jianing Song, Aug 26 2019

Keywords

Comments

This square root of -1 in the 17-adic field ends with digit 4. The other, A309990, ends with digit 13 (D when written as a 17-adic number).

Examples

			The solution to x^2 == -1 (mod 17^4) such that x == 4 (mod 17) is x == 27493 (mod 17^4), and 27493 is written as 5A24 in heptadecimal, so the first four terms are 4, 2, 10 and 5.
		

Crossrefs

Digits of p-adic square roots:
A318962, A318963 (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A051277, A290558 (7-adic, sqrt(2));
A321074, A321075 (11-adic, sqrt(3));
A321078, A321079 (11-adic, sqrt(5));
A322091, A322092 (13-adic, sqrt(-3));
A286838, A286839 (13-adic, sqrt(-1));
A322087, A322088 (13-adic, sqrt(3));
this sequence, A309990 (17-adic, sqrt(-1)).

Programs

  • PARI
    a(n) = truncate(sqrt(-1+O(17^(n+1))))\17^n

Formula

a(n) = (A286877(n+1) - A286877(n))/17^n.
For n > 0, a(n) = 16 - A309990(n).
Showing 1-10 of 16 results. Next