A325490 Digits of one of the four 5-adic integers 6^(1/4) that is congruent to 2 mod 5.
2, 4, 0, 3, 0, 2, 0, 4, 0, 3, 0, 2, 2, 2, 1, 2, 1, 4, 0, 3, 4, 2, 1, 4, 1, 1, 2, 0, 0, 3, 0, 1, 1, 3, 1, 4, 4, 0, 2, 4, 0, 4, 1, 2, 0, 1, 2, 3, 2, 4, 2, 4, 1, 3, 0, 2, 1, 0, 3, 3, 3, 3, 0, 2, 2, 3, 1, 1, 4, 1, 1, 0, 1, 4, 0, 3, 3, 3, 0, 3, 0, 0, 4, 0, 3, 2, 3, 1
Offset: 0
Examples
The unique number k in [1, 5^3] and congruent to 2 modulo 5 such that k^4 - 6 is divisible by 5^3 is k = 22 = (42)_5, so the first three terms are 2, 4 and 0.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Wikipedia, p-adic number
Crossrefs
Programs
-
Maple
S:= select(t -> op([1,3,1],t)=2, [padic:-rootp(_Z^4-6,5,100)]): op([1,1,3],S); # Robert Israel, Mar 23 2023
-
PARI
a(n) = lift(sqrtn(6+O(5^(n+1)), 4) * sqrt(-1+O(5^(n+1))))\5^n
Comments