cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269593 a(n) = (A268922(n)^2 + 4)/5^n, n >= 0.

Original entry on oeis.org

4, 1, 5, 1, 109, 1460, 292, 53476, 124904, 993169, 5385572, 43930532, 239139524, 777233593, 789206948, 2256445369, 65340851012, 661111023620, 132222204724, 7745142596633, 10225443529556, 103321258570120, 20664251714024, 4562022446935993, 6246398287209928, 20888388201358465
Offset: 0

Views

Author

Wolfdieter Lang, Mar 02 2016

Keywords

Comments

a(n) is an integer because b(n) = A268922(n) satisfies b(n)^2 + 4 == 0 (mod 5^n), n>=0.
See A268922 for details and references.

Examples

			a(0) = (0 + 4)/1 = 4.
a(4) = (261^2 + 4)/5^4 = 109.
		

Crossrefs

Cf. A268922, A269590, A269594 (companion sequence).

Programs

  • PARI
    a(n) = ((truncate(sqrt(-4+O(5^(n)))))^2 + 4)/5^n; \\ Michel Marcus, Mar 07 2016

Formula

a(n) = (b(n)^2 + 1)/5^n, n>=0, with b(n) = A268922(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 02 2020