A269595 Irregular triangle in which n-th row the gives quadratic residues prime(n)- m modulo prime(n), for m from {1, 2, ..., prime(n)-1}, in increasing order.
1, 2, 1, 4, 3, 5, 6, 2, 6, 7, 8, 10, 1, 3, 4, 9, 10, 12, 1, 2, 4, 8, 9, 13, 15, 16, 2, 3, 8, 10, 12, 13, 14, 15, 18, 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22, 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28
Offset: 1
Examples
The irregular triangle T(n, k) begins (P(n) is here prime(n)): n, P(n)\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1, 2: 1 2, 3: 2 3, 5: 1 4 4, 7: 1 2 4 5, 11: 1 3 4 5 9 6: 13: 1 3 4 9 10 12 7, 17: 1 2 4 8 9 13 15 16 8, 19: 1 4 5 6 7 9 11 16 17 9, 23: 1 2 3 4 6 8 9 12 13 16 18 10, 29: 1 4 5 6 7 9 13 16 20 22 23 24 25 28 ...
Programs
-
Mathematica
t = Table[Select[Range[Prime@ n - 1], JacobiSymbol[#, Prime@ n] == 1 &], {n, 10}]; Table[Prime@ n - t[[n, (Prime@ n - 1)/2 - k + 1]], {n, Length@ t}, {k, (Prime@ n - 1)/2}] /. {} -> 1 // Flatten (* Michael De Vlieger, Mar 31 2016, after Jean-François Alcover at A063987 *)
Formula
For n = 1, prime(1) = 2: 1, and for odd primes n >= 2: the increasing values of m from {1, 2, ..., p-1} with the Legendre symbol (-m/prime(n)) = + 1.
T(n, k) = prime(n) - A063987(n,(prime(n)-1)/2-k+1). k=1..(prime(n)-1)/2, for n >= 2, and T(1, 1) = 1.
Comments