cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269662 Semiprimes which are the sum of a twin prime pair plus one.

Original entry on oeis.org

9, 25, 85, 121, 145, 205, 217, 301, 361, 481, 565, 697, 841, 865, 1141, 1285, 1717, 1765, 2041, 2101, 2305, 2461, 2581, 2605, 2641, 2965, 2977, 3241, 3337, 3397, 3865, 3901, 3997, 4285, 4537, 4681, 4765, 5317, 5377, 5461, 5941, 6001, 6241, 6505, 6937, 7081, 7117
Offset: 1

Views

Author

K. D. Bajpai, Mar 02 2016

Keywords

Comments

All the terms, except a(1), are congruent to 1 (mod 3).

Examples

			a(2) = 25 = 5 * 5 that is semiprime. Also, 25 = 11 + 13 + 1 where {11, 13} is a twin prime pair.
a(3) = 85 = 5 * 17 that is semiprime. Also, 55 = 41 + 43 + 1 where {41, 43} is a twin prime pair.
		

Crossrefs

Programs

  • Magma
    IsP2:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ s: n in [1..1000] | IsPrime(n) and IsPrime(n+2) and IsP2(s) where s is (n + n+2 + 1)];
  • Mathematica
    A269662 = {}; Do[a = Prime[n]; b = a + 2; c = a + b + 1; If[PrimeQ[b] && PrimeOmega[c] == 2, AppendTo[A269662, c]], {n, 1000}]; A269662
    Select[Range[1, 7200, 2], And[PrimeOmega@ # == 2, And[PrimeQ@ #, NextPrime[#] - 2] == # &[(# - 1)/2 - 1]] &] (* Michael De Vlieger, Apr 01 2016 *)
    Select[1+Total[#]&/@Select[Partition[Prime[Range[500]],2,1],#[[2]]-#[[1]] == 2&],PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 10 2016 *)
  • PARI
    for(n = 1, 1000, p=prime(n); q=p+2; s=p+q+1; if(isprime(q) && bigomega(s)==2, print1(s,", ")));