cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269801 Total sum of the divisors of the primes p,q such that n=p+q and p>=q.

Original entry on oeis.org

0, 0, 0, 0, 6, 7, 8, 9, 10, 11, 24, 0, 14, 15, 32, 17, 36, 0, 40, 21, 44, 23, 72, 0, 78, 27, 84, 0, 60, 0, 96, 33, 68, 35, 144, 0, 152, 0, 80, 41, 126, 0, 176, 45, 138, 47, 192, 0, 250, 51, 208, 0, 162, 0, 280, 57, 174, 0, 240, 0, 372, 63, 192, 65, 330, 0
Offset: 0

Views

Author

Wesley Ivan Hurt, Mar 05 2016

Keywords

Examples

			a(5) = 7; Since 5 can be expressed in one way as the sum of the two primes 2 and 3, we add the sum of their divisors separately: sigma(2) + sigma(3) = 3 + 4 = 7.
a(10) = 24; Since 10 can be expressed in two ways as the sum of two primes, we add the sum of the divisors of each prime p and q: 10 = 3+7 = 5+5, so sigma(3) + sigma(7) + sigma(5) + sigma(5) = 4 + 8 + 6 + 6 = 24.
		

Crossrefs

Cf. A000203 (sigma), A010051, A014092, A061358.

Programs

  • Maple
    with(numtheory): A269801:=n->(n+2)*sum((pi(i)-pi(i-1))*(pi(n-i)-pi(n-i-1)), i=2..floor(n/2)): seq(A269801(n), n=0..100);
  • Mathematica
    Table[(n+2) Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i] - PrimePi[n - i - 1]), {i, 2, Floor[n/2]}], {n, 0, 80}]
  • PARI
    a(n) = sum(i=0, n\2, if (isprime(i) && isprime(n-i), sigma(i)+sigma(n-i))); \\ Michel Marcus, Mar 05 2016

Formula

a(n) = (n+2) * A061358(n).
a(n) = (n+2) * Sum_{i=2..floor(n/2)} A010051(i) * A010051(n-i).
a(n) = Sum_{i=2..floor(n/2)} (A000203(i) + A000203(n-i)) * A010051(i) * A010051(n-i).