cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269803 a(n) = F(n+1)*F(n+2) - F(n), where F = A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 5, 13, 37, 99, 265, 701, 1849, 4861, 12761, 33463, 87697, 229737, 601693, 1575629, 4125661, 10802107, 28281881, 74045509, 193857841, 507533181, 1328750065, 3478730543, 9107463457, 23843695249, 62423679605, 163427436301, 427858779349, 1120149144531
Offset: 1

Views

Author

Clark Kimberling, Mar 05 2016

Keywords

Comments

NI(F(n+1)/a(n)) = (n,n,n,n,n,...), where NI(x) denotes the r-nested-interval sequence of x, and r = (1/1, 1/2, 1/3, 1/5, 1/8, ...), the reciprocals of Fibonacci numbers. Definitions follow. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) , x <= r(n), and let L(1) = r(n(1))-r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) < x <= r(n(1)+1) + L(1)r(n), and let L(2) = (r(n(2))-r(r(n)+1)L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ... ), the r-nested interval sequence of x.
Conversely, given a sequence s= (n(1),n(2),n(3),...) of positive integers, the number x having satisfying NI(x) = s, is the sum of left-endpoints of nested intervals (r(n(k)+1), r(n(k))]; i.e., x = sum{L(k)r(n(k+1)+1), k >=1}, where L(0) = 1. Thus, for r = (1/F(n+1)), the number F(n+1)F(n+2)/a(n) is the only x for which NI(x) = (n,n,n,...).

Crossrefs

Programs

  • Magma
    [Fibonacci(n+1)*Fibonacci(n+2) - Fibonacci(n): n in [1..30]]; // Vincenzo Librandi, Mar 06 2016
    
  • Mathematica
    f[n_] := Fibonacci[n]; u = Table[f[n + 1] f[n + 2] - f[n], {n, 1, 40}]
    LinearRecurrence[{3,1,-5,-1,1},{1,5,13,37,99},40] (* Harvey P. Dale, Jul 27 2021 *)
  • PARI
    a(n) = fibonacci(n+1)*fibonacci(n+2) - fibonacci(n); \\ Altug Alkan, Mar 06 2016
    
  • PARI
    Vec(x*(1+2*x-3*x^2-2*x^3+x^4)/((1+x)*(1-3*x+x^2)*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Mar 06 2016

Formula

a(n) = F(n+1)F(n+2)-F(n), F = A000045 (Fibonacci numbers).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+2*x-3*x^2-2*x^3+x^4) / ((1+x)*(1-3*x+x^2)*(1-x-x^2)). - Colin Barker, Mar 06 2016