A269803 a(n) = F(n+1)*F(n+2) - F(n), where F = A000045 (Fibonacci numbers).
1, 5, 13, 37, 99, 265, 701, 1849, 4861, 12761, 33463, 87697, 229737, 601693, 1575629, 4125661, 10802107, 28281881, 74045509, 193857841, 507533181, 1328750065, 3478730543, 9107463457, 23843695249, 62423679605, 163427436301, 427858779349, 1120149144531
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,1,-5,-1,1).
Programs
-
Magma
[Fibonacci(n+1)*Fibonacci(n+2) - Fibonacci(n): n in [1..30]]; // Vincenzo Librandi, Mar 06 2016
-
Mathematica
f[n_] := Fibonacci[n]; u = Table[f[n + 1] f[n + 2] - f[n], {n, 1, 40}] LinearRecurrence[{3,1,-5,-1,1},{1,5,13,37,99},40] (* Harvey P. Dale, Jul 27 2021 *)
-
PARI
a(n) = fibonacci(n+1)*fibonacci(n+2) - fibonacci(n); \\ Altug Alkan, Mar 06 2016
-
PARI
Vec(x*(1+2*x-3*x^2-2*x^3+x^4)/((1+x)*(1-3*x+x^2)*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Mar 06 2016
Formula
a(n) = F(n+1)F(n+2)-F(n), F = A000045 (Fibonacci numbers).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+2*x-3*x^2-2*x^3+x^4) / ((1+x)*(1-3*x+x^2)*(1-x-x^2)). - Colin Barker, Mar 06 2016
Comments