cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A270000 Harmonic fractility of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 2, 3, 3, 2, 4, 1, 2, 3, 2, 3, 3, 1, 1, 3, 1, 3, 3, 1, 5, 1, 3, 3, 2, 2, 2, 1, 1, 1, 5, 3, 3, 1, 3, 3, 4, 1, 2, 2, 3, 3, 6, 3, 3, 2, 1, 4, 3, 1, 2, 2, 3, 3
Offset: 2

Views

Author

Keywords

Comments

In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) + L(1)*r(n+1) < x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2))-r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility.
For harmonic fractility, r(n) = 1/n, n(j+1) = floor(L(j)/(x - Sum_{i=1..j} L(i-1)/(n(i)+1))) for all j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018

Examples

			NI(1/11) = (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(2/11) = (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(3/11) = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(4/11) = (2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...),
NI(5/11) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...),
NI(6/11) = (1, 11, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(7/11) = (1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(8/11) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(9/11) = (1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(10/11) = (1, 1, 1, 3, 3, 3, 3, 3, 3, 3, ...),
so that there are 3 equivalence classes for n = 11, and that the harmonic fractility of 11 is 3.
		

Crossrefs

Guide to related sequences:
k - numbers with harmonic fractility k:
1 - A269804
2 - A269805
3 - A269806
4 - A269807
5 - A269808
6 - A269809
Cf. A269570 (binary fractility), A269982 (factorial fractility).

Programs

  • Mathematica
    A270000[n_] := CountDistinct[With[{l = NestWhileList[Rescale[#, {1/(Floor[1/#] + 1), 1/Floor[1/#]}] &, #, UnsameQ, All]}, Min@l[[First@FirstPosition[l, Last@l] ;;]]] & /@ Range[1/n, 1 - 1/n, 1/n]] (* Davin Park, Nov 09 2016 *)
  • PARI
    A270000(n)=#Set(vector(n-1,k,NIR(k/n))) \\ where:
    NIR(x, n, L=1, S=[], c=0)={for(i=2, oo, n=L\x; S=setunion(S, [x/L]); x-=L/(n+1); L/=n*(n+1); setsearch(S, x/L)&& if(c, break, c=!S=[])); S[1]} \\ variant of the function NI() below; returns just a unique representative (smallest x/L occurring within the period) of the equivalence class.
    NI(x, n=[], L=1, S=[], c=0)={for(i=2, oo, n=concat(n, L\x); c|| S=setunion(S, [x/L]); x-=L/(n[#n]+1); L/=n[#n]*(n[#n]+1); if(!c, setsearch(S, x/L)&& [c,S]=[i,x/L], x/L==S, c-=i; break)); [n[1..2*c-1], n[c..-1]]} \\ Returns the harmonic nested interval sequence for x in the form [transition, period]. (End)

Extensions

Definition corrected by Jack W Grahl, Jun 27 2018
Edited by M. F. Hasler, Nov 05 2018

A269805 Numbers having harmonic fractility A270000(n) = 2.

Original entry on oeis.org

5, 10, 15, 20, 30, 37, 40, 43, 45, 59, 60, 61, 73, 74, 80, 85, 86, 90, 97, 101, 103, 107, 111, 118, 120, 122, 127, 129, 135, 139, 146, 148, 160, 167, 170, 172, 177, 180, 183, 194, 199, 202, 206, 214, 219, 222, 236, 240, 244, 254, 255, 258, 270, 277, 278, 291
Offset: 1

Views

Author

Keywords

Comments

In order to define (harmonic) fractility of an integer n > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1))-r(n(1)+1). Let n(2) be the largest index n such that x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2))-r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ... ) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually equal (up to an offset). For n > 1, the r-fractility of n is the number of equivalence classes of sequences NI(m/n) for 0 < m < n. Taking r = (1/1, 1/2, 1/3, 1/4, ...) gives harmonic fractility.

Examples

			Nested interval sequences NI(k/m) for m = 5:
NI(1/5) = (5, 1, 1, 1, 1, 1,...),
NI(2/5) = (2, 2, 2, 2, 2, 2,...),
NI(3/5) = (1, 5, 1, 1, 1, 1,...),
NI(4/5) = (1, 1, 5, 1, 1, 1,...),
so that there are 2 equivalence classes for n = 5, and the fractility of 5 is 2.
		

Crossrefs

Cf. A269804, A269806, A269807, A269808, A269809 (numbers with harmonic fractility 1, 3, ..., 6), A270000 (harmonic fractility of n).

Programs

Extensions

Edited by M. F. Hasler, Nov 05 2018

A269806 Numbers having harmonic fractility A270000(n) = 3.

Original entry on oeis.org

11, 13, 19, 22, 23, 25, 26, 29, 33, 35, 38, 39, 44, 46, 47, 50, 52, 53, 57, 58, 66, 67, 69, 70, 75, 76, 78, 79, 83, 87, 88, 89, 92, 94, 99, 100, 104, 105, 106, 114, 116, 117, 119, 125, 132, 133, 134, 138, 140, 149, 150, 152, 155, 156, 158, 159, 161, 166, 171
Offset: 1

Views

Author

Keywords

Comments

To define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the largest index n such that x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2))-r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ... ) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ...) gives harmonic fractility.
In the case of harmonic fractility, r(n) = 1/n, we have n(j+1) = floor(L(j)/(x -Sum_{i=1..j} L(i-1)/(n(i)+1))) for j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018

Examples

			Nested interval sequences NI(k/m) for m = 11:
NI(1/11) = (11,1, 1, 1, 1, 1, 1, 1, ...),
NI(2/11) = (5, 2, 1, 2, 1, 2, 1, 1, 2, ...),
NI(3/11) = (3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(4/11) = (2, 5, 2, 1, 2, 1, 2, 1, 2, ...),
NI(5/11) = (2, 1, 2, 1, 2, 1, 2, 1, 2, ...) equivalent to NI(4/11),
NI(6/11) = (1, 11, 1, 1, 1, 1, 1, 1, ...) equivalent to NI(1/11),
NI(7/11) = (1, 3, 3, 3, 3, 3, 3, 3, 3, ...) equivalent to NI(3/11),
NI(8/11) = (1, 2, 1, 2, 1, 2, 1, 2, 1, ...) equivalent to NI(4/11),
NI(9/11) = (1, 1, 3, 3, 3, 3, 3, 3, 3, ...) equivalent to NI(3/11),
NI(10/11) = (1, 1, 1, 3, 3, 3, 3, 3, ...) equivalent to NI(3/11).
So there are 3 equivalence classes for m = 11, and the fractility of 11 is 3.
		

Crossrefs

Cf. A269804, A269805, A269807, A269808, A269809 (numbers with harmonic fractility 1, 2, 4, 5, 6, respectively); A270000 (harmonic fractility of n).

Programs

Extensions

Edited by M. F. Hasler, Nov 05 2018

A269807 Numbers having harmonic fractility A270000(n) = 4.

Original entry on oeis.org

41, 71, 82, 109, 123, 141, 142, 157, 163, 164, 169, 175, 179, 181, 187, 191, 197, 211, 218, 229, 246, 251, 257, 265, 271, 282, 284, 293, 305, 311, 314, 323, 326, 327, 328, 338, 341, 350, 358, 362, 369, 371, 374, 382, 394, 395, 415, 422, 423, 433, 436, 445, 449
Offset: 1

Views

Author

Keywords

Comments

In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the largest index n such that x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2)) - r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually equal (up to an offset). For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility.
In the case of harmonic fractility, r(n) = 1/n, we have n(j+1) = floor(L(j)/(x -Sum_{i=1..j} L(i-1)/(n(i)+1))) for j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018

Examples

			Nested interval sequences NI(k/m) for m = 41:
NI(1/41) = (41, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(2/41) = (20, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, ...),
NI(3/41) = (13, 3, 1, 1, 4, 2, 2, 20, 1, 1, 1, 2, 2, 1, 1, 1, 2, ...) ~ NI(2/41),
NI(4/41) = (10, 1, 2, 1, 1, 8, 1, 1, 8, 1, 1, 8, 1, 1, 8, 1, 1, 8, 1, 1, ...),
NI(5/41) = (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...).
Any further NI(k/41) is equivalent to one of the  above, e.g., NI(40/11) = (1, 1, 1, 1, 1, 4, 2, 2, 20, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, ...) ~ NI(2/41).
Thus, the number of equivalence classes is 4 (represented by 1/41, 2/41, 4/41 and 5/41), so that the fractility of 41 is 4.
		

Crossrefs

Cf. A269804, A269805, A269806, A269808, A269809 (numbers with harmonic fractility 1, 2, ..., 6), A270000 (harmonic fractility of n).

Programs

Extensions

More terms from Jack W Grahl, Jun 27 2018
Edited by M. F. Hasler, Nov 05 2018

A269808 Numbers having harmonic fractility A270000(n) = 5.

Original entry on oeis.org

55, 65, 91, 110, 115, 121, 130, 137, 165, 182, 195, 205, 213, 220, 221, 230, 235, 242, 260, 273, 274, 295, 330, 335, 337, 345, 355, 361, 363, 364, 390, 391, 403, 407, 410, 411, 419, 426, 440, 442, 460, 467, 470, 481, 484, 485, 495, 497, 503, 505, 517, 520, 546
Offset: 1

Views

Author

Keywords

Comments

In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the largest index n such that x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2)) - r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually equal (up to an offset). For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility.
In the case of harmonic fractility, r(n) = 1/n, we have n(j+1) = floor(L(j)/(x -Sum_{i=1..j} L(i-1)/(n(i)+1))) for j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018

Examples

			Nested interval sequences NI(k/m) for m = 55:
The 5 equivalence classes are represented by
NI(1/55) = (55, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(2/55) = (27, 2, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, ...),
NI(4/55) = (13, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,...),
NI(6/55) = (9, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(22/55) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...).
For example, NI(3/55) = (18, 1, 3, 1, 2, 1, 55, 1, 1, 1, ...) is equivalent to NI(1/55).
		

Crossrefs

Cf. A269804, A269805, A269806, A269807, A269809 (numbers with harmonic fractility 1, 2, ..., 6), A270000 (harmonic fractility of n).

Programs

Extensions

More terms from Jack W Grahl, Jun 27 2018
Edited by M. F. Hasler, Nov 05 2018

A269809 Numbers having harmonic fractility A270000(n) = 6.

Original entry on oeis.org

77, 95, 131, 145, 154, 190, 203, 209, 231, 247, 262, 275, 285, 290, 299, 308, 329, 377, 380, 393, 406, 418, 431, 435, 437, 443, 462, 494, 524, 529, 539, 545, 550, 559, 570, 580, 595, 598, 609, 616, 627, 658, 685, 689, 693, 705, 737, 741, 754, 760, 767, 786
Offset: 1

Views

Author

Keywords

Comments

In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the largest index n such that x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2)) - r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually equal (up to an offset). For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility.
In the case of harmonic fractility, r(n) = 1/n, we have n(j+1) = floor(L(j)/(x -Sum_{i=1..j} L(i-1)/(n(i)+1))) for j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018

Examples

			Nested interval sequences NI(k/m) for m = 77:
The 6 equivalence classes are represented by
NI(1/77) = (77, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(2/77) = (38, 2, 1, 1, 1, 1, 2, 3, 8, 2, 2, 1, 1, 1, 1, 2, 3, 8, 2, 2, 1, ...) (period length 9),
NI(3/77) = (25, 3, 1, 1, 1, 5, 15, 1, 5, 15, 1, 5, 15, 1, 5, 15, 1, 5, 15, ...),
NI(8/77) = (9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, ...),
NI(10/77) = (7, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(14/77) = (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...).
For example, N(4/77) = (19, 1, 2, 1, 1, 1, 15, 1, 5, 15, 1, 5, ...) is equivalent to NI(3/77), and NI(6/77) = (12, 6, 1, 11, 1, 1, 1, ...) is equivalent to NI(1/77). - _M. F. Hasler_, Nov 05 2018
		

Crossrefs

Cf. A269804, A269805, A269806, A269807, A269808 (numbers with harmonic fractility 1, 2, 3, 4, 5, respectively); A270000 (harmonic fractility of n).

Programs

Extensions

More terms from Jack W Grahl, Jun 28 2018
Edited by M. F. Hasler, Nov 05 2018
Showing 1-6 of 6 results.