A269859 Primes p such that p+2^4, p+2^6, p+2^8, p+2^10, p+2^12 and p+2^14 are all primes.
37, 163, 15667, 47287, 120607, 142543, 234067, 263047, 263803, 444607, 607093, 671353, 1447153, 1457857, 1562983, 2162323, 2694157, 2841337, 2979043, 3362143, 3567337, 4890307, 5037433, 5353987, 5772097, 6404773, 6776023, 7717873, 9139453, 9549373, 10550467
Offset: 1
Keywords
Examples
The prime 37 is in the sequence, since 37 + 16 = 53, 37 + 64 = 101, 37 + 256 = 293, 37 + 1024 = 1061, 37 + 4096 = 4133 and 37 + 16384 = 16421 are all primes. The prime 163 is in the sequence, since 163 + 16 = 179, 163 + 64 = 227, 163 + 256 = 419, 163 + 1024 = 1187, 163 + 4096 = 4259 and 163 + 16384 = 16547 are all primes.
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..10801
Programs
-
Magma
[p: p in PrimesInInterval(2,12000000) | forall{i: i in [16,64,256,1024,4096,16384] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 16 2016
-
Mathematica
m = Map[2^# &, 2 Range[2, 7]]; Select[Prime@ Range[10^6], Times @@ Boole@ PrimeQ[# + m] == 1 &] (* Michael De Vlieger, Jul 13 2016 *)
-
Perl
use ntheory ":all"; say for sieve_prime_cluster(2,1e6, 16,64,256,1024,4096,16384); # Dana Jacobsen, Jul 13 2016