cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269859 Primes p such that p+2^4, p+2^6, p+2^8, p+2^10, p+2^12 and p+2^14 are all primes.

Original entry on oeis.org

37, 163, 15667, 47287, 120607, 142543, 234067, 263047, 263803, 444607, 607093, 671353, 1447153, 1457857, 1562983, 2162323, 2694157, 2841337, 2979043, 3362143, 3567337, 4890307, 5037433, 5353987, 5772097, 6404773, 6776023, 7717873, 9139453, 9549373, 10550467
Offset: 1

Views

Author

Keywords

Examples

			The prime 37 is in the sequence, since 37 + 16 = 53, 37 + 64 = 101, 37 + 256 = 293, 37 + 1024 = 1061, 37 + 4096 = 4133 and 37 + 16384 = 16421 are all primes.
The prime 163 is in the sequence, since 163 + 16 = 179, 163 + 64 = 227, 163 + 256 = 419, 163 + 1024 = 1187, 163 + 4096 = 4259 and 163 + 16384 = 16547 are all primes.
		

Crossrefs

Subsequence of A269259.

Programs

  • Magma
    [p: p in PrimesInInterval(2,12000000) | forall{i: i in [16,64,256,1024,4096,16384] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 16 2016
  • Mathematica
    m = Map[2^# &, 2 Range[2, 7]]; Select[Prime@ Range[10^6], Times @@ Boole@ PrimeQ[# + m] == 1 &] (* Michael De Vlieger, Jul 13 2016 *)
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(2,1e6, 16,64,256,1024,4096,16384); # Dana Jacobsen, Jul 13 2016