cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269939 Triangle read by rows, Ward numbers T(n, k) = Sum_{m=0..k} (-1)^(m + k) * binomial(n + k, n + m) * Stirling2(n + m, m), for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 10, 15, 0, 1, 25, 105, 105, 0, 1, 56, 490, 1260, 945, 0, 1, 119, 1918, 9450, 17325, 10395, 0, 1, 246, 6825, 56980, 190575, 270270, 135135, 0, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025
Offset: 0

Views

Author

Peter Luschny, Mar 26 2016

Keywords

Comments

We propose to call this sequence the 'Ward set numbers' and sequence A269940 the 'Ward cycle numbers'. - Peter Luschny, Nov 25 2022

Examples

			Triangle starts:
  1;
  0, 1;
  0, 1,   3;
  0, 1,  10,   15;
  0, 1,  25,  105,   105;
  0, 1,  56,  490,  1260,    945;
  0, 1, 119, 1918,  9450,  17325,  10395;
  0, 1, 246, 6825, 56980, 190575, 270270, 135135;
		

Crossrefs

Variants: A134991 (main entry for this triangle), A181996.
Row sums are A000311.
Alternating row sums are signed factorials A133942.
Cf. A269940 (Stirling1 counterpart), A268437.

Programs

  • Maple
    # first version
    A269939 := (n,k) -> add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m, m), m=0..k):
    seq(seq(A269939(n,k), k=0..n), n=0..8);
    # Alternatively:
    T := proc(n,k) option remember;
        `if`(k=0 and n=0, 1,
        `if`(k<=0 or k>n, 0,
        k*T(n-1,k)+(n+k-1)*T(n-1,k-1))) end:
    for n from 0 to 6 do seq(T(n,k),k=0..n) od;
    # simple, third version
    T := (n,k)->  (n+k)!*coeftayl((exp(z)-z-1)^k/k!, z=0, n+k); # Marko Riedel, Apr 14 2016
  • Mathematica
    Table[Sum[(-1)^(m + k) Binomial[n + k, n + m] StirlingS2[n + m, m], {m, 0, k}], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 15 2016 *)
  • PARI
    T(n) = {[Vecrev(Pol(p)) | p<-Vec(serlaplace(1/((1+y)*(1 + lambertw(-y/(1+y)*exp((x-y)/(1+y) + O(x*x^n)))))))]}
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2022
  • Sage
    T = lambda n,k: sum((-1)^(m+k)*binomial(n+k,n+m)*stirling_number2(n+m,m) for m in (0..k))
    for n in (0..6): print([T(n,k) for k in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
    

Formula

T(n,k) = (-1)^k*FF(n+k,n)*P[n,k](1/(n+1)) where P is the P-transform and FF the falling factorial function. For the definition of the P-transform see the link.
T(n,k) = A268437(n,k)*FF(n+k,n)/(2*n)!.
T(n,k) = (n+k)! [z^{n+k}] (exp(z)-z-1)^k/k!. - Marko Riedel, Apr 14 2016
From Fabián Pereyra, Jan 12 2022: (Start)
T(n,k) = k*T(n-1,k) + (n+k-1)*T(n-1,k-1) for n > 0, T(0,0) = 1, T(n,0) = 0 for n > 0. (See the second Maple program.)
E.g.f.: A(x,t) = 1/((1+t)*(1 + W(-t/(1+t)*exp((x-t)/(1+t))))), where W(x) is the Lambert W-function.
T(n,k) = Sum_{j=0..k} E2(n,j)*binomial(n-j,k-j), where E2(n,k) are the second-order Eulerian numbers A340556.
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A112486(n,j)*binomial(j,k). (End)