cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134438 Number of tilings of a 3 X n rectangle with n trominoes.

Original entry on oeis.org

1, 1, 3, 10, 23, 62, 170, 441, 1173, 3127, 8266, 21937, 58234, 154390, 409573, 1086567, 2882021, 7645046, 20279829, 53794224, 142696606, 378522507, 1004078871, 2663452699, 7065162260, 18741269167, 49713692146, 131872134232, 349808216915, 927912454723
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2008

Keywords

References

  • G. Kreweras, Recouvrements d'un rectangle de largeur 3 à l'aide de triminos, Mathématiques et sciences humaines, tome 130 (1995), p. 27-31.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[1$2, 0$2, 1, 0]]). Matrix(6, (i,j)-> if i+1=j then 1 elif j=1 then [1, 2, 6, 1, 0, -1][i] else 0 fi)^n)[1,2]: seq(a(n), n=0..30);  # Alois P. Heinz, Oct 09 2008
  • Mathematica
    LinearRecurrence[{1,2,6,1,0,-1},{1,1,3,10,23,62},40] (* Harvey P. Dale, Aug 27 2013 *)

Formula

a(n) = a(n-1) +2*a(n-2) +6*a(n-3) +a(n-4) -a(n-6).
G.f.: (1-x^3) / (1-x-2*x^2-6*x^3-x^4+x^6). - Alois P. Heinz, Oct 09 2008

Extensions

More terms from Alois P. Heinz, Oct 09 2008

A270061 Number A(n,k) of tilings of a k X n rectangle using monominoes and trominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 2, 1, 1, 3, 14, 14, 3, 1, 1, 4, 45, 93, 45, 4, 1, 1, 6, 140, 590, 590, 140, 6, 1, 1, 9, 438, 3710, 7517, 3710, 438, 9, 1, 1, 13, 1371, 23509, 96176, 96176, 23509, 1371, 13, 1, 1, 19, 4287, 148796, 1238818, 2501946, 1238818, 148796, 4287, 19, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 09 2016

Keywords

Examples

			A(2,3) = A(3,2) = 14:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |_____|  |_|_|_|  |_____|  |_| |_|  | |_|_|  | ._|_|  |_. |_|
  |_____|  |_____|  |_|_|_|  |___|_|  |___|_|  |_|_|_|  |_|_|_|
.
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |_|_|_|  | ._| |  | |_. |  |_|_| |  |_| |_|  |_| ._|  |_|_. |
  |_|_|_|  |_|___|  |___|_|  |_|___|  |_|___|  |_|_|_|  |_|_|_|  .
.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,        1,          1, ...
  1, 1,   1,     2,       3,        4,          6, ...
  1, 1,   5,    14,      45,      140,        438, ...
  1, 2,  14,    93,     590,     3710,      23509, ...
  1, 3,  45,   590,    7517,    96176,    1238818, ...
  1, 4, 140,  3710,   96176,  2501946,   65410388, ...
  1, 6, 438, 23509, 1238818, 65410388, 3473827027, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A000930, A270062, A270063, A270064, A270065, A270066, A270067, A270068, A270069, A270070.
Main diagonal gives A270071.
Cf. A233320.
Showing 1-2 of 2 results.