A272888 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with w*(x^2 + 8*y^2 - z^2) a square, where w,x,y are nonnegative integers and z is a positive integer.
1, 2, 2, 1, 4, 5, 1, 2, 5, 5, 4, 4, 5, 8, 2, 2, 8, 6, 4, 6, 9, 5, 3, 4, 5, 12, 9, 1, 11, 8, 4, 2, 8, 9, 8, 7, 6, 12, 1, 5, 14, 10, 4, 8, 15, 9, 3, 4, 8, 14, 11, 5, 11, 16, 2, 6, 11, 6, 11, 4, 13, 13, 1, 1, 16, 17, 6, 9, 13, 9, 5, 7, 9, 19, 12, 6, 17, 8, 4, 6
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 1 > 0 and 0*(0^2 + 8*0^2 - 1^2) = 0^2. a(4) = 1 since 4 = 0^2 + 0^2 + 0^2 + 2^2 with 2 > 0 and 0*(0^2 + 8*0^2 - 2^2) = 0^2. a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 1 > 0 and 2*(1^2 + 8*1^2 - 1^2) = 4^2. a(28) = 1 since 28 = 2^2 + 2^2 + 4^2 + 2^2 with 2 > 0 and 2*(2^2 + 8*4^2 - 2^2) = 16^2. a(39) = 1 since 39 = 1^2 + 3^2 + 2^2 + 5^2 with 5 > 0 and 1*(3^2 + 8*2^2 - 5^2) = 4^2. a(63) = 1 since 63 = 2^2 + 5^2 + 3^2 + 5^2 with 5 > 0 and 2*(5^2 + 8*3^2 - 5^2) = 12^2. a(87) = 1 since 87 = 2^2 + 1^2 + 9^2 + 1^2 with 1 > 0 and 2*(1^2 + 8*9^2 - 1^2) = 36^2. a(5116) = 1 since 5116 = 65^2 + 9^2 + 9^2 + 27^2 with 27 > 0 and 65*(9^2 + 8*9^2 - 27^2) = 0^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
- Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
Crossrefs
Programs
-
Maple
N:= 1000; # to get a(1)..a(N) A:= Vector(N): for z from 1 to floor(sqrt(N)) do for x from 0 to floor(sqrt(N-z^2)) do for y from 0 to floor(sqrt(N-z^2-x^2)) do q:= x^2 + 8*y^2 - z^2; if q < 0 then A[x^2+y^2+z^2]:= A[x^2+y^2+z^2]+1 elif q = 0 then for w from 0 to floor(sqrt(N-z^2-x^2-y^2)) do m:= w^2 + x^2 + y^2 + z^2; A[m]:= A[m]+1; od else wm:= mul(`if`(t[2]::odd, t[1], 1), t=isqrfree(q)[2]); for j from 0 to floor((N-z^2-x^2-y^2)^(1/4)/sqrt(wm)) do m:= (wm*j^2)^2 + x^2 + y^2 + z^2; A[m]:= A[m]+1; od; fi od od od: convert(A,list); # Robert Israel, May 27 2016
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[Sqrt[n-x^2-y^2-z^2](x^2+8y^2-z^2)],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,1,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]
Extensions
Rick L. Shepherd, May 27 2016: I checked all the statements in each example.
Comments