A271518 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with x + 3*y + 5*z a square, where w, x, y and z are nonnegative integers.
1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 2, 2, 2, 4, 2, 2, 5, 5, 3, 2, 2, 2, 3, 1, 5, 5, 2, 2, 5, 8, 1, 2, 6, 3, 3, 2, 3, 7, 5, 2, 8, 6, 1, 4, 6, 6, 2, 2, 6, 9, 5, 4, 3, 7, 6, 2, 6, 7, 5, 2, 1, 6, 6, 2, 10, 9, 6, 3, 3, 6, 2, 3, 8, 12, 5, 5, 7, 11, 5, 1
Offset: 0
Keywords
Examples
a(5) = 1 since 5 = 2^2 + 1^2 + 0^2 + 0^2 with 1 + 3*0 + 5*0 = 1^2. a(6) = 1 since 6 = 2^2 + 1^2 + 1^2 + 0^2 with 1 + 3*1 + 5*0 = 2^2. a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 1 + 3*1 + 5*1 = 3^2. a(8) = 1 since 8 = 0^2 + 0^2 + 2^2 + 2^2 with 0 + 3*2 + 5*2 = 4^2. a(24) = 1 since 24 = 4^2 + 0^2 + 2^2 + 2^2 with 0 + 3*2 + 5*2 = 4^2. a(31) = 1 since 31 = 1^2 + 5^2 + 2^2 + 1^2 with 5 + 3*2 + 5*1 = 4^2. a(43) = 1 since 43 = 1^2 + 1^2 + 5^2 + 4^2 with 1 + 3*5 + 5*4 = 6^2. a(61) = 1 since 61 = 6^2 + 0^2 + 0^2 + 5^2 with 0 + 3*0 + 5*5 = 5^2. a(116) = 1 since 116 = 10^2 + 4^2 + 0^2 + 0^2 with 4 + 3*0 + 5*0 = 2^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- António Machiavelo and Nikolaos Tsopanidis, Zhi-Wei Sun's 1-3-5 Conjecture and Variations, arXiv:2003.02592 [math.NT], 2020.
- António Machiavelo and Nikolaos Tsopanidis, Zhi-Wei Sun's 1-3-5 Conjecture and Variations, J. Number Theory 222 (2021), 1-20.
- António Machiavelo, Rogério Reis, and Nikolaos Tsopanidis, Report on Zhi-Wei Sun's "1-3-5 conjecture" and some of its refinements, arXiv:2005.13526 [math.NT], 2020.
- António Machiavelo, Rogério Reis, and Nikolaos Tsopanidis, Report on Zhi-Wei Sun's 1-3-5 conjecture and some of its refinements, J. Number Theory 222 (2021), 21-29.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.NT], 2016.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. (See Conjecture 4.3(i) and Remark 4.3.)
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x+3y+5z],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,0,80}]
Comments