A273107 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (8*x+12*y)^2 + (15*z)^2 a square, where x,y,z,w are nonnegative integers with x+y > 0 and z > 0.
0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 3, 4, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 1, 1, 1, 1, 4, 3, 3, 4, 1, 1, 5, 3, 2, 3, 3, 5, 2, 1, 2, 1, 3, 3, 3, 3, 2, 4, 5, 5, 2, 4, 5, 6, 1, 3, 7, 3, 5, 4, 2, 6, 4, 1, 5, 4, 5, 4, 7, 7, 4, 3, 5, 4, 5, 6, 2, 10, 3, 1
Offset: 1
Keywords
Examples
a(2) = 1 since 2 = 1^2 + 0^2 + 1^2 + 0^2 with 1 + 0 > 0 < 1 and (8*1+12*0)^2 + (15*1)^2 = 17^2. a(4) = 1 since 4 = 1^2 + 1^2 + 1^2 + 1^2 with 1 + 1 > 0 < 1 and (8*1+12*1)^2 + (15*1)^2 = 25^2. a(6) = 1 since 6 = 1^2 + 0^2 + 1^2 + 2^2 with 1 + 0 > 0 < 1 and (8*1+12*0)^2 + (15*1)^2 = 17^2. a(7) = 1 since 7 = 1^2 + 1^2 + 1^2 + 2^2 with 1 + 1 > 0 < 1 and (8*1+12*1)^2 + (15*1)^2 = 25^2. a(9) = 1 since 9 = 2^2 + 0^2 + 2^2 + 1^2 with 2 + 0 > 0 < 2 and (8*2+12*0)^2 + (15*2)^2 = 34^2. a(10) = 1 since 10 = 0^2 + 3^2 + 1^2 + 0^2 with 0 + 3 > 0 < 1 and (8*0+12*3)^2 + (15*1)^2 = 39^2. a(20) = 1 since 20 = 3^2 + 1^2 + 1^2 + 3^2 with 3 + 1 > 0 < 1 and (8*3+12*1)^2 + (15*1)^2 = 39^2. a(23) = 1 since 23 = 2^2 + 1^2 + 3^2 + 3^2 with 2 + 1 > 0 < 3 and (8*2+12*1)^2 + (15*3)^2 = 53^2. a(25) = 1 since 25 = 1^2 + 2^2 + 4^2 + 2^2 with 1 + 2 > 0 < 4 and (8*1+12*2)^2 + (15*4)^2 = 68^2. a(26) = 1 since 26 = 0^2 + 3^2 + 1^2 + 4^2 with 0 + 3 > 0 < 1 and (8*0+12*3)^2 + (15*1)^2 = 39^2. a(31) = 1 since 31 = 3^2 + 3^2 + 3^2 + 2^2 with 3 + 3 > 0 < 3 and (8*3+12*3)^2 + (15*3)^2 = 75^2. a(42) = 1 since 42 = 2^2 + 2^2 + 5^2 + 3^2 with 2 + 2 > 0 < 5 and (8*2+12*2)^2 + (15*5)^2 = 85^2. a(55) = 1 since 55 = 6^2 + 1^2 + 3^2 + 3^2 with 6 + 1 > 0 < 3 and (8*6+12*1)^2 + (15*3)^2 = 75^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(8x+12y)^2+(15z)^2],r=r+1],{x,0,Sqrt[n-1]},{y,Max[0,1-x],Sqrt[n-1-x^2]},{z,1,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]
Comments