A270083 Near-miss circular primes: Primes p where all but one of the numbers obtained by cyclically permuting the digits of p are prime.
19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 101, 103, 107, 127, 149, 157, 163, 173, 181, 191, 271, 277, 307, 313, 317, 331, 359, 367, 379, 397, 419, 479, 491, 571, 577, 593, 617, 631, 673, 701, 709, 727, 739, 757, 761, 787, 797, 811, 839, 877, 907, 911
Offset: 1
Links
- Felix Fröhlich and Giovanni Resta, Table of n, a(n) for n = 1..511 (first 487 terms from Felix Fröhlich)
Programs
-
Mathematica
NearCircPrmsUpTo10powerK[k_]:= Union @ Flatten[ Table[ParallelMap[If[(Count[FromDigits /@ NestList[RotateLeft, IntegerDigits[#], IntegerLength[#]-1], ?PrimeQ] == IntegerLength[#]-1), #, Nothing] &, Select[FromDigits /@ Tuples[Range[0, 9], n], PrimeQ]], {n, k}], 1]; NearCircPrmsUpTo10powerK[7] (* _Mikk Heidemaa, Apr 26 2017 *)
-
PARI
rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v eva(n) = subst(Pol(n), x, 10) is(n) = my(r=rot(digits(n)), i=0); while(r!=digits(n), if(ispseudoprime(eva(r)), i++); r=rot(r)); if(ispseudoprime(eva(r)), i++); if(n==1 || n==11, return(0)); if(i==#Str(n)-1, 1, 0) forprime(p=1, 1e3, if(is(p), print1(p, ", ")))
Comments