A270142 a(n) = product of first k composites, with the i-th composite raised to the d-th power, where k = A055642(n) and d is the i-th digit of n.
4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 4, 24, 144, 864, 5184, 31104, 186624, 1119744, 6718464, 40310784, 16, 96, 576, 3456, 20736, 124416, 746496, 4478976, 26873856, 161243136, 64, 384, 2304, 13824, 82944, 497664, 2985984, 17915904, 107495424
Offset: 1
Examples
a(12) = 144, since A002808(1) = 4, A002808(2) = 6 and 4^1 * 6^2 = 144.
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
Programs
-
PARI
composite(n) = my(i=0, c=2); while(1, if(!ispseudoprime(c), i++); if(i==n, return(c)); c++) compopowerprod(n) = my(d=digits(n)); for(k=1, #d, p=prod(i=1, #d, composite(i)^d[i])); p a(n) = compopowerprod(n)
-
Python
from math import prod from sympy import composite def A270142(n): return prod(composite(i)**int(d) for i, d in enumerate(str(n),1)) # Chai Wah Wu, Dec 09 2022
Comments