cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A271799 Prime numbers whose reversal is a product of 3 distinct primes.

Original entry on oeis.org

223, 269, 281, 457, 499, 839, 1049, 1289, 1373, 1459, 1543, 1609, 2003, 2011, 2017, 2027, 2029, 2053, 2081, 2087, 2213, 2221, 2237, 2239, 2243, 2267, 2269, 2293, 2297, 2441, 2459, 2609, 2657, 2659, 2693, 2699, 2803, 2833, 2851, 2857, 2879, 2887, 2897, 3449, 3557
Offset: 1

Views

Author

Chai Wah Wu, Apr 14 2016

Keywords

Comments

Each of the three distinct primes must have an exponent of one, i.e., the number of distinct primes and also the number of primes counted with multiplicity must equal three. - Harvey P. Dale, Sep 26 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], PrimeQ[#] && Transpose[FactorInteger[IntegerReverse[#]]][[2]] == {1, 1, 1} &] (* Tanya Khovanova, Mar 16 2021 *)
    Select[Prime[Range[500]],PrimeNu[IntegerReverse[#]]==PrimeOmega[IntegerReverse[#]]==3&] (* Harvey P. Dale, Sep 26 2024 *)

A356767 Tetraprimes (products of four distinct primes) whose reversals are different tetraprimes.

Original entry on oeis.org

1518, 2046, 2226, 2262, 2418, 2478, 2618, 2622, 2814, 2838, 2886, 3135, 3927, 4170, 4182, 4386, 4389, 4746, 4785, 4935, 5313, 5394, 5406, 5478, 5565, 5655, 5838, 5874, 6018, 6045, 6222, 6402, 6438, 6474, 6486, 6690, 6699, 6834, 6846, 6882, 7293, 7458, 8106, 8142
Offset: 1

Views

Author

Tanya Khovanova, Aug 26 2022

Keywords

Comments

Palindromic tetraprimes are A046394.
The corresponding sequence for three distinct primes is A270175.

Examples

			1518 = 2*3*11*23 is a tetraprime. Its reversal 8151 = 3*11*13*19 is another tetraprime. Thus, 1518 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],Transpose[ FactorInteger[FromDigits[Reverse[IntegerDigits[#]]]]][[2]] == {1, 1, 1, 1} && IntegerDigits[#] != Reverse[IntegerDigits[#]] && Transpose[FactorInteger[#]][[2]] == {1, 1, 1, 1} &]
  • Python
    from sympy import factorint
    def tetra(n): return list(factorint(n).values()) == [1, 1, 1, 1]
    def ok(n):
        if not tetra(n): return False
        revn = int(str(n)[::-1])
        return n != revn and tetra(revn)
    print([k for k in range(9000) if ok(k)]) # Michael S. Branicky, Aug 27 2022
Showing 1-2 of 2 results.