cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270225 Lesser of twin primes where both primes are the sum of three squares.

Original entry on oeis.org

3, 11, 17, 41, 59, 107, 137, 179, 227, 281, 347, 419, 521, 569, 617, 641, 659, 809, 827, 857, 881, 1019, 1049, 1091, 1289, 1427, 1451, 1481, 1619, 1667, 1697, 1721, 1787, 1931, 2027, 2081, 2129, 2267, 2339, 2657, 2729, 2801, 2969, 3251, 3257, 3299, 3329, 3371, 3467, 3539
Offset: 1

Views

Author

Altug Alkan, Mar 13 2016

Keywords

Examples

			3 is a term because 3 = 1^2 + 1^2 + 1^2 and 5 = 0^2 + 1^2 + 2^2.
17 is a term because 17 = 2^2 + 2^2 + 3^2 and 19 = 1^2 + 3^2 + 3^2.
41 is a term because 41 = 3^2 + 4^2 + 4^2 and 43 = 3^2 + 3^2 + 5^2.
59 is a term because 59 = 3^2 + 5^2 + 5^2 and 61 = 3^2 + 4^2 + 6^2.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(4000) | IsPrime(p+2) and  p mod 8 in [1,3]]; // Vincenzo Librandi, Jul 18 2016
  • Mathematica
    Select[Prime[Range[500]], MemberQ[{1, 3}, Mod[#, 8]] && PrimeQ[# + 2] &] (* Vincenzo Librandi, Jul 18 2016 *)
  • PARI
    isA004215(n) = my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri-7 ; if( j % 8==0, return(1) ) ; ); fouri *= 4 ; ) ; return(0);
    t(n, p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2}
    for(n=1, 1e2, if(!isA004215(t(n)) && !isA004215(t(n)+2), print1(t(n), ", ")));
    
  • Python
    from sympy import prime, isprime
    A270225_list = [p for p in (prime(i) for i in range(2,10**3)) if p % 8 not in {5,7} and isprime(p+2)] # Chai Wah Wu, Jul 18 2016
    

Formula

Primes p such that p == 1 or 3 mod 8 and p+2 is prime. - Chai Wah Wu, Jul 18 2016