cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A270228 Number of matchings in the n X n rook graph K_n X K_n.

Original entry on oeis.org

1, 7, 370, 270529, 3337807996, 855404716021831, 5352265402523357926168, 940288991338542314571521981185, 5236753179470435264288904589157765055760, 1029720447530443779943631183186535523331685533812231
Offset: 1

Views

Author

Andrew Howroyd, Mar 13 2016

Keywords

Comments

K_n X K_n is also called the rook graph or lattice graph.

Crossrefs

Cf. A270227, A270229, A085537 (Wiener index), A002720 (independent vertex sets), A269561, A028420.

A270227 Array read by antidiagonals: T(n,m) is the number of matchings in the rook graph K_n X K_m.

Original entry on oeis.org

1, 2, 2, 4, 7, 4, 10, 32, 32, 10, 26, 193, 370, 193, 26, 76, 1382, 5950, 5950, 1382, 76, 232, 11719, 122984, 270529, 122984, 11719, 232, 764, 112604, 3175696, 16873930, 16873930, 3175696, 112604, 764, 2620, 1221889, 98815588, 1384880065, 3337807996, 1384880065, 98815588, 1221889, 2620
Offset: 1

Views

Author

Andrew Howroyd, Mar 13 2016

Keywords

Comments

Observations: (for n+m <= 32)
Examination of values modulus a small prime yields several patterns.
T(n,m) == (n+1)*(m+1) (mod 2) for n+m>2.
T(n,m) == T(n,m+6) (mod 3).
T(n,m) is not divisible by 3.
T(n,m) == 0 (mod 5) for n==4 (mod 5) and m<>2 and except when m=n=4.
T(5,m) == 0 (mod 208) for m >= 13.
T(6,m) == 0 (mod 19) for m >= 19.

Examples

			The start of the sequence as table:
*   1     2       4         10           26              76 ...
*   2     7      32        193         1382           11719 ...
*   4    32     370       5950       122984         3175696 ...
*  10   193    5950     270529     16873930      1384880065 ...
*  26  1382  122984  168739305   3337807996    909046586596 ...
*  76 11719 3175696 1384880065 909046586596 855404716021831 ...
* ...
		

Crossrefs

Main diagonal is A270228. Rows include A000085, A270229.

A281433 Number of maximal matchings in the 2 X n rook graph.

Original entry on oeis.org

1, 1, 2, 10, 40, 296, 1576, 15352, 104000, 1276480, 10556416, 156843776, 1533722752, 26777626240, 302395339520, 6068829396736, 77740741758976, 1763457842941952, 25267740818452480, 639308368122204160, 10131932297407840256, 282891828731667890176
Offset: 0

Views

Author

Andrew Howroyd, Oct 05 2017

Keywords

Crossrefs

Row n=2 of A341847.
Cf. A081919 (perfect matchings), A270229, A289198.

Programs

  • Mathematica
    a[n_] := Sum[(2*k-1)!!^2 * Binomial[n, 2*k] * (1 + 2*k*(n-2*k)), {k, 0, n/2} ]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    a(n) = sum(k=0, n\2, ((2*k)!/(2^k*k!))^2 * binomial(n,2*k) * (1 + 2*k*(n-2*k)));

Formula

a(n) = Sum_{k=0..n/2} (2*k-1)!!^2 * binomial(n,2*k) * (1 + 2*k*(n-2*k)).
Showing 1-3 of 3 results.