cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270338 Primes whose decimal expansion contains only 3's and 4's, in which every 4 is preceded and followed by a 3.

Original entry on oeis.org

3343, 3433, 33343, 333433, 334333, 343333, 343433, 3333433, 3343343, 3343433, 3433333, 34333333, 333334333, 333343343, 333343433, 333433343, 333434333, 334334333, 3333334343, 3333433343, 3334333333, 3343334333, 3343434343, 3433434343, 3434343433, 33333333343
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 15 2016

Keywords

Comments

A sequence related to A054356. These primes look like "EEhEEhEEE" when viewed upside down by rotation of 180 degrees (3343 - "EhEE", 3433 - "EEhE", 33343 - "EhEEE", 333433 - "EEhEEE").

References

  • Giorgio Balzarotti, Paolo P. Lava, Centotre curiosità matematiche, Hoepli, 2010, pp. 3-4.

Crossrefs

Cf. A054356. Subsequence of A020461.

Programs

  • Magma
    [p: p in [3..33333333343 by 10] | (p mod 100 eq 33 or p mod 100 eq 43) and IsPrime(p) and Position(IntegerToString(p), IntegerToString(3)) eq 1 and Set(Intseq(p)) subset [3, 4] and not IntegerToString(44) in IntegerToString(p)];
  • Maple
    S:= {}:
    for n from 3 to 16 do
      for k from 1 to floor((n-1)/2) do
         for r in combinat:-choose(n-1-k,k) do
            L:=subsop(seq(t=(3,4),t=r),[3$(n-k)]);
            x:= add(L[i]*10^(n-i),i=1..n);
            if isprime(x) then S:= S union {x} fi
    od od od:
    sort(convert(S,list)); # Robert Israel, Mar 15 2016
  • Mathematica
    Select[Flatten[Table[FromDigits/@Select[Tuples[{3,4},n],SequenceCount[ #,{3,4,3},Overlaps->True]==Count[#,4]&],{n,3,11}]],PrimeQ]//Sort (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 17 2016 *)